DOI QR코드

DOI QR Code

해저면 반사 환경에서 음파의 파면을 이용하는 음원의 거리 추정

Estimation of a source range using acoustic wavefront in bottom reflection environment

  • 투고 : 2024.03.12
  • 심사 : 2024.05.11
  • 발행 : 2024.05.31

초록

파면곡률거리추정(Wavefront Curvature Ranging, WCR)은 음파의 파면곡률로부터 음원의 거리를 추정하는 방법이다. 기존의 파면곡률거리추정은 음속을 상수로 가정하고 삼각법으로 거리를 추정한다. 이 가정 때문에 해저면반사경로가 뚜렷하게 분리되는 해양환경에서는 거리 오차가 발생한다. 거리 오차를 줄이기 위해 해양의 음속구조를 적용하고 최대우도추정(Maximum Likelihood Estimation, MLE)방법으로 거리를 추정하는 정합 파면곡률거리추정(Matched Wavefront Curvature Ranging, MWCR) 을 제안하였다. 정합 파면곡률거리추정의 시뮬레이션 결과로부터 거리 오차의 감소를 확인하였다. 향후에 실측 신호로부터 거리 추정의 신뢰성을 확인하면 소나 시스템에 적용 가능할 것이다.

The Wavefront Curvature Ranging (WCR) is an estimation method for a source range from the wavefront curvature of acoustic waves. The conventional method uses trigonometry to estimate the source range by assuming the sound speed as a constant. Because of this assumption, range error occurs in the ocean environment where the bottom reflection is clearly separated. In order to reduce the range error, Matched Wavefront Curvature Ranging (MWCR) was proposed applying the sound speed structure in the ocean environment and Maximum Likelihood Estimation (MLE). The range error was reduced in the results of the simulation on the proposed method. In the future, this method will be applicable to the sonar system if the reliability of ranging is confirmed by measured signal.

키워드

과제정보

이 논문은 2024년 정부(방위사업청)의 재원으로 국방과학연구소의 지원을 받아 수행된 연구임(922015301).

참고문헌

  1. R. O. Neilsen, Sonar Signal Processing (Artech House, Inc., London, 1991), pp. 351-354.
  2. C. C. Hassab, Underwater Signal and Data Processing (CRC Press, Florida, 2000), pp. 181-187.
  3. B. G. Ferguson and R. J. Wyber, "Wavefront curvature passive ranging in a temporally varing sound propagation medium," Proc. MTI/IEEE Oceans Con. No. 01CH37295 (2001).
  4. S. P. Beerens, S. P. Ijsselmuide, and A. C. Koersel, "Passive ranging with flank and towed array sensor," Proc. 2003 Int. Con. Defence Technology (UDT) Conference, 1-8 (2003).
  5. J.-S. Park and J.-H. Choi, "Error analysis of the passive localization using near-field effect in the sea" (in Korean), J. Acoust. Soc. Kr. 20, 75-81 (2001).
  6. T. J. Jung, D. K. Kim, B. S. Kwon, K. S. Yoon, and K. K. Lee, "Bearing range estimation method using NLS cost function in IDRS system" (in Korean), J. Korea Ins. of Military Sci. and Tech. 14, 590-579 (2011).
  7. D. Shin, H.-D. Cho, T. Kwon, and J.-K. Ahn, "Discrete-time approximation and modeling of the broadband underwater propagation channel based in eigenray analysis" (in Korean), J. Acoust. Soc. Kr. 39, 216-225 (2020).
  8. M.-S. Shim, J.-H. Lee, and H.-S. Lee, "Time-delay estimation method for performance enhancement of underwater source localization using doublet array" (in Korean), J. Kor. Academia-industral Co. Soc. 21, 70-76 (2020).
  9. S. Lee, S. Park, and I. Seo, "Analysis of bearing error related to beamwidth and fusion tracking filter taking into account it" (in Korean), J. KIIT. 11, 105-113 (2013).
  10. E. J. Sullivan, J. V. Candy, and L. Persson, "Model_ based acoustic array processing," Lawrence Livermore National Laboratory, UCRL-CONF-210525, Rep., 2005.
  11. R. Rebenstein and P. Annibale, "Acoustic source localization under variable speed of sound conditions," Hindawi Wirless Communications and Mobile Computing, 2017, 1-17 (2017).
  12. M. Badiey, B. G. Katsenelson, Y. Lin, and J. Lynch, "Acoustic multipath arrivals in the horizontal plane due to approaching nonlinear internal wave," J. Acoust. Soc. Am. 129, 141-147 (2011).
  13. M. B. Porter, "The bellhop manual and user's guide: preliminary draft," Heat, Light, and Sound Research, Inc., 2011.
  14. S. Benjamin and C. Kreucher, "Performance of maximum likelihood estimation for multipath TDOA passive ranging," Proc. 18th Int. Conf. on Information Fusion, 742-747 (2015).
  15. D. Dardari and F. Guidi, "Direct position estimation from wavefront curvature with signal antenna array," Proc. 8th Int. Conf. on Localization and GNSS, 1-5 (2018).