• Title/Summary/Keyword: 구조 신뢰성

Search Result 3,300, Processing Time 0.038 seconds

Effect of Partially Restrained Connections on Seismic Risk Evaluation of Steel Frames (강 뼈대 구조물의 지진위험도 평가에 대한 부분구속 접합부의 영향)

  • 허정원;조효남
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.537-549
    • /
    • 2001
  • The effect of partially restrained(PR) connections and the uncertainties in them on the reliability of steel frames subjected to seismic loading is addressed. A stochastic finite element method(SFEM) is proposed combining the concepts of the response surface method(RSM), the finite element method(FEM), the first-order reliability method (FORM), and the iterative linear interpolation scheme. The behavior of PR connections is captured using moment-relative rotation curves, and is represented by the four-parameter Richard model. For seismic excitation, the loading, unloading, and reloading behavior at PR connections is modeled using moment-relative rotation curves and the Masing rule. The seismic loading is applied in the time domain for realistic representation. The reliability of steel frames in the presence of PR connections is calculated considering all major sources of nonlinearity. The algorithm is clarified with the help of an example.

  • PDF

Enhanced Cube Network for the High Reliability (고 신뢰성 큐브 네트웍)

  • Mun Youngsong
    • Journal of Internet Computing and Services
    • /
    • v.4 no.6
    • /
    • pp.25-31
    • /
    • 2003
  • Multistage Interconnection networks (MIN) for the high performance computing and communications must be efficient and reliable. While a number of fault tolerance schemes have been developed, some of them are not efficient enough with respect to all evaluation measures or overheads of others are too significant. In this paper we develop a new efficient fault tolerant MIN which displays high reliability and fault tolerance capability using a simple structure. Structure and reliabilities of Enhanced Cube Network are evaluated and compared with previous designs to show the effectiveness of new design.

  • PDF

Reliability Analysis of Tripod Support Structure for Offshore Wind Turbine using Stress Concentration Factor (응력집중계수를 이용한 해상풍력터빈 트라이포드 지지구조물의 신뢰성해석)

  • Lee, Sang Geun;Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.2
    • /
    • pp.92-100
    • /
    • 2016
  • Reliability analysis of tripod support structure for offshore wind turbine was performed. Extreme distribution function of peak response due to wind and wave loads was estimated by applying peak over threshold(POT) method. Then, stress based limit state function was defined by using maximum stress of support structure which was obtained by multiplying beam stress and concentration factor. The reliability analysis result was compared when maximum stress was calculated from shell element. Reliability index was evaluated using first order reliability method(FORM).

Reliability Analysis of Floating Offshore Structure - Fundamental Study of System Reliability Analysis - (부유식 해양구조물의 신뢰성해석 -시스템 신뢰성 해석에 관한 기초연구-)

  • Joo-Sung Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.207-227
    • /
    • 1991
  • The impact of the system reliability analysis to structural design is described in this paper and various methods for system reliability analysis developed up to the present are reviewed and discussed from the view point of their efficiency. The paper also includes the detailed formulation procedure of the, so called, extended incremental load method has applied to relatively simple structure to show its usefulness.

  • PDF

Reliability-based Design Method of Concrete Armour Units with Structural Stability (구조적 안정성을 고려한 콘크리트 피복재의 신뢰성 설계)

  • Lee Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.3
    • /
    • pp.142-151
    • /
    • 2004
  • A method for the determination of concrete armor unit weights with hydraulic stability and structural stability may be formulated in this paper. The hydraulic stability is analyzed by using Hudson's formula, the structural stability is also studied by evaluation of maximum flexural tensile stresses in armor unit induced by the impact loads and by comparison of those with the tensile resistance strength directly. The applicable criteria for concrete armor units can be represented as a function of design wave heights with return period, armor weights, and tensile strengths for the practical uses. In addition, reliability analyses for two failure modes are carried out to take into account some uncertainties. Finally, a series system for two-failure mode analysis can be made up straightforwardly, by which the optimal weights of armor units can be estimated with the various relative breakages, given the specific target probability of failure under the concepts of reliability-based design method.

VE/LCC Analysis Models of Breakwaters by Fuzzy Reliability Approach (퍼지 신뢰성 이론에 의한 방파제의 VE/LCC 분석모델)

  • Ahn, Jong-Pil;Park, Ju-Won;Yu, Deog-Chan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.8 no.3
    • /
    • pp.159-167
    • /
    • 2007
  • In this study, the concepts of integrated VE analysis assessment is introduced in order to achieve "Design for Deterioration performance" in design VE phase. For this purpose, a framework for fuzzy reliability based LCC and value analysis model using fuzzy logic based approach for breakwaters Projects is suggested. It is anticipated that the methodology Proposed in this paper can also be utilized in the design and maintenance phase of other facilities where decision making is made for the fuzzy reliability based life cycle cost and value analysis.

Study of Reliability Index in Concrete Structures Considering Coefficient of Variation of Degradation Factors (열화인자별 변동계수 변화에 따른 콘크리트 구조물의 신뢰성 지수에 관한 연구)

  • Kim, Joo-Hyung;Jung, Sang-Hwa;Kim, Tae-Sang;Lee, Kwang-Myoung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.541-544
    • /
    • 2008
  • Recently, a variety of researches has been carried out to estimate the reliability-based analysis and design method of concrete structures and is attracted by probabilistic-based durability analysis/method of concrete structures subjected to chloride containing environment using MCS (Monte Carlo Simulation). Probabilistic-based durability analysis/method was proposed by lots of researches, but there is the lack of data for degradation factors for the calculation of probability distribution. The reliability based durability analysis method represents that the service life and reliability index varies with the probability distribution and coefficient of variation of each factor. Therefore, in this paper, the importance of experiment data for the degradation factors is confirmed and the study of reliability index in RC structures under chloride attack environments is performed considering the variation coefficient of degradation factors.

  • PDF

Verification of FE models for various types of structures using measured dynamci properties (동특성 계측을 통한 건물 구조형식별 FE 구조해석 모델의 검증)

  • Kim, Ji-Young;Park, Jae-Keun;Cho, Ja-Ock;Yu, Eun-Jong;Kim, Dae-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.598-601
    • /
    • 2011
  • 동적응답과 하중을 정확히 산정하기 위해서는 구조물의 동적특성을 정확히 평가하는 것이 중요하기 때문에, 현재 대부분의 경우 FE 모델을 이용한 Modal 해석을 dldydg하여 동특성을 평가하고 있다. 그러나 실제 건물의 계측결과와 동적특성의 해석결과가 많은 차이를 나타내고 있으므로 해석결과의 신뢰성을 향상하기 위해서는 FE 모델에 대한 Calibration이 수행될 필요성이 있다. 이 논문에서는 초고층, 아파트, 대공간 구조물에 대한 계측을 수행하고 이 결과를 바탕으로 동특성을 정확히 예측하기 위한 FE 모델의Calibration 과정을 제시하였다. 이 결과를 바탕으로 동적특성의 정확성이 풍동실험결과의 신뢰성에 미치는 영향을 분석하였다.

  • PDF

The Expectation for Material Properties of Microstructure by Application of Dynamic Response Characteristics (동적 응답 특성을 활용한 미세구조의 물성 분포에 대한 예측)

  • Lee, Jeong-Ick;Yeo, Moon-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.3
    • /
    • pp.580-586
    • /
    • 2008
  • This paper addresses the prediction of the material property continuities of a microstructure. Prediction was made by measuring the dynamic responses distribution of the fabricated materials used in the microstructures. When these distributional material properties were used in estimating the mechanical performances of microstructures, the differences between the computer simulation and the experimental result of microstructures could be reduced and their reliability design could be made.