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Effect of Partially Restrained Connections on
Seismic Risk Evaluation of Steel Frames
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Abstract

The effect of partially restrained(PR) connections and the uncertainties in them on the reliability of steel frames
subjected to seismic loading is addressed. A stochastic finite element method(SFEM) is proposed combining the
concepts of the response surface method(RSM), the finite element method(FEM), the first-order reliability method
(FORM), and the iterative linear interpolation scheme. The behavior of PR connections is captured using
moment-relative rotation curves, and is represented by the four-parameter Richard model. For seismic excitation,
the loading, unloading, and reloading behavior at PR connections is modeled using moment-relative rotation curves
and the Masing rule. The seismic loading is applied in the time domain for realistic representation. The reliability of
steel frames in the presence of PR connections is calculated considering all major sources of nonlinearity. The
algorithm is clarified with the help of an example.

Keywords ' partially restrained connections, seismic loading, reliability, limit state function, response surface
method, stochastic finite element method
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1. Introduction

Structural failures reported in the post-earthquake
investigation of Northridge and Kobe earthquakes
forced the research profession to reevaluate issues
related to the seismic design and analysis of
steel structures. Especially the connection of steel
frame structures and their risk assessment
associated with the extreme loading conditions
such as earthquakes have received great attention
from them. Therefore, extensive research works
have been being conducted in this subject by
numerous researchers from all over the world.
However, an efficient and accurate reliability
estimation method for nonlinear steel frame struc-
tures in consideration of realistic connection
conditions subjected to seismic loading has not yet
been proposed. Most structures develop nonlinear
behavior just before failure. To evaluate the
damage state of a structure just before failure,
various sources of nonlinearity under dynamic
loading conditions need to be considered. One
of the major sources of nonlinearity in steel
frames is the presence of partially restrained(PR)
connections. Connections in steel frames are
routinely considered to be fully restrained(FR).
The FR connections are assumed to simplify
calculations and are thus a major weakness in
current analytical procedures. An analogous
situation is assuming that truss members are
pin-connected and develop only axial loads in
order to simplify calculations. However, it is
established in the profession that connections in
steel frames are PR type with different rigidities.
The implication is that PR connections change
the dynamic properties, e.g., the natural frequency,
stiffness, damping, etc., of structures. PR con-
nections reduce the overall stiffness of frames
but add a major source of energy dissipation and
a type of hysteretic damping to the structure.
The loading, unloading, and reloading behavior
at PR connections needs to be captured appro-
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priately to evaluate the reliability of steel frames.
Consequently, for seismic response analysis, proper
consideration of the rigidity of connections is
essential no matter how difficult the analysis
procedure becomes.

Huh” and Huh & Haldar? proposed a stochastic
finite element method(SFEM) integrating the
response surface method(RSM), the finite element
method(FEM), the first~order reliability method
(FORM), and the iterative linear interpolation
scheme to estimate the reliability of structures
subjected to short-duration dynamic loading
including seismic loading. The presence of PR
connections in a frame was not considered. The
algorithm is extended in this paper to consider
PR connections. The proposed algorithm considers
all major sources of nonlinearity and uncertainty
in evaluating the reliability of steel frame struc-
tures as realistically as possible.

2. Connection Conditions

Most structures consist of many structural
elements, which are connected to each other by
various types of connections. For steel structures,
these connections are usually modeled as FR
and PR types. However, extensive experimental
studies indicate that they are essentially PR
connections with different rigidities as explained
in the previous section. In a deterministic analy-
sis, PR connections add a major source of
nonlinearity by decreasing the overall stiffness of
a frame, and in the respect of dynamic analysis
they add a major source of energy dissipation,
causing an additional major source of uncertainty
in reliability analysis. Thus, the reliability of steel
frames with PR connections subjected to seismic
excitation is expected to be quite different than
that of frames with FR connections. The impli-
cations of the presence of PR connections and the
uncertainty in modeling them in the analysis
are the subjects of this paper. Some of essential
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issues on connections and their incorporation into
the proposed algorithm are explicitly discussed
in the following sections.

2.1. Classification of Flexible Connections

The flexibility of connections particularly in a
steel frame should be properly considered in any
realistic analysis algorithm. The best description
of the flexural behavior of a connection is its
moment-rotation M-8 curve. This is the relation-
ship between the moment transmitted by the
connection and the rotation of the beam relative
to the column. The typical moment and rotation
angle position is shown in Fig. 1.

The American Institute of Steel Construction
(AISC) specifications” provide three basic types of
connections and associated analysis assumptions:

1. Type I, designated as ‘rigid—frame’(continuous
frame), assumes that beam-to-column con-
nections have sufficient rigidity to maintain the
original angles between intersecting members
virtually unchanged.

2. Type II, designated as “simple-frame”(un-
restrained or pinned), assumes that the end
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Fig. 1 Moment and relative rotation(M-8) of a flexible
connection

of the beams and girders are connected for
shear only, and are free to rotate under gravity
load.

3. Type III, designated as “semi-rigid (partially
restrained, PR), assumes that the connections
of beams and girders possess a dependable
and known moment capacity intermediate in
degree between the rigidity of Type I and
flexibility of Type II.

The Load and Resistance Factored Design
(LRFD) code” also suggests two types of models
for connections; fully restrained(FR) and partially
restrained(PR). The graphical representation
of these classifications is shown in Fig. 2.

However, despite these classification, it has
been found from experimental observation®®"”
that the connections are rarely rigid(Type I)
or pinned(Type II) as is routinely assumed in
analysis. They are partially restrained(Type III,
PR) with different rigidities in most cases. The
consideration of connection rigidity is essential
in the analysis and design of large deformed
steel frame structures®.

M
fxed M> 0.9 M,

¥~~~ Toe 3 and PR Connection
0.2Mpe < M <0.9M,,,

END MOMNET, M

............. N

M<0.2M,,,

e1 63 62 ellmplo
MEMBER END ROTATION, 6
Fig. 2 M-6 Characteristics of AISC Connection Types
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2.2. Moment-Rotation Curve Models

To study the effect of connection flexibility
on the behavior of frames, each connection has
to be modeled properly. Various models have
been proposed by researchers to represent the
moment-rotation behavior for connections, such
as linear, bilinear, piecewise linear, polynomial,
exponential, B-Spline, and Richard models.
The linear model cannot be used since the M-6
curves for steel beam-to-column connections are
in nature nonlinear. The bilinear and piecewise
linear models are simple to use, they may,
however, produce numerical difficulties due to
abrupt changes in the stiffness. The polynomial
model could produce negative connection stiffness
unless the terms in the model are selected
appropriately. The exponential and the B-Spline
models usually give a good representation of
the M-8 curve, but a large number of para-
meters need to be evaluated for their use.

The Richard model®” was developed using
actual test data to predict the behavior of a wide
variety of steel frame connections(36 composite
and non-composite connections). The laboratory
force-deformation test results are analytically
described by the Richard four-parameter function.
These parameters are dependent upon the
connection geometry, stiffness and strength. A
generalized analytical connection model that
simulates the connection segments is then used
to generate the moment-rotation curve. It has
good predictability and is easy to incorporate
into the general finite element formulation.
Therefore, the Richard model is used to represent
the M-8 curve in this study and is further
explained in the following section.

2.3 Consideration of Connection Conditions
in the Finite Element Formulation

The presence of partial connection rigidity
needs to be incorporated in the deterministic
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analysis of structures to capture their realistic
behavior. As mentioned in the previous sections,
the relationship between the moment M, trans-
mitted by the connection, and the relative
rotation angle 6 is generally used to represent
the flexible behavior of a connection and the
Richard four-parameter moment-rotation model
is chosen here to represent the flexible behavior
of a connection. This model can be expressed
as®:

k—k )0
M= ¢ ») ~+k,0
A (1)
MO

where M is the connection moment, 6 is the
relative rotation angle between the connecting
elements, k is the initial stiffness, k, is the
plastic stiffness, Mo is the reference moment,
and N is the curve shape parameter.

These parameters are identified in Fig. 3. This
model also encompasses more simple models,
that is, if k» is k, it becomes the simple linear
model, the elasto-plastic model if k,=0 and the
bilinear model if N is large.

The assumed stress-based FEM approach'”'"?
is used for the structural analysis in this study
because of its efficiency in incorporating PR
connections in the algorithm. In this approach,

A

Slope k
Slope &,

M,

Increasing N

-
o

Fig. 3 M-8 curve using the Richard Model
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a beam-column element is introduced to model
both a regular structural element and a flexible
connection. Although an ordinary beam-column
element is used to represent a PR connection
element for numerical analyses, its stiffness
should be updated at each iteration since the
stiffness representing the partial rigidity depends
on 6. This can be accomplished by updating
the Young’'s modulus as:

E.@)=1c K (6)=1c M©)
1, T

(2)
where Ic, Ic, and Kc(8) are the length, the
moment of inertia, and the tangent stiffness of
the connection element, respectively. Kc(6) is
calculated using Equation (1) and can be
shown to be:

Kc(e)'_’

a__ koky)
d

The Richard model for PR connections discussed
up to now represents only the monotonically
increasing loading portions of the M-8 curves.
However, the unloading and reloading behavior of
the M-@ curves are also essential for nonlinear
seismic analysis. Namely, if the direction of the
moment to be applied in a connection is reversed,
the connection is expected to unload and follow
a different path, which is almost linear with a
slope equal to the initial slope of the M-8 curve
as shown in Fig. 4. This subject was extensively
addressed in the literature™'”. To consider
the unloading and reloading behavior at the PR
connections, the monotonic loading behavior
and the Masing rule are used. A general class
of Masing models can be defined with a virgin
loading curve expressed as:

! (M, .0
M,

(M, ,6,)

Fig. 4 Loading, Unloading, and Reverse Loading
Model of PR Connections

fM,e)=0
b.0) (4)

and its unloading and reloading curve can be
described by the following equation:

f(M—M“ ’e—ea )=0

2 2 (5)
where (M., 6.) is the load reversal point as
shown in Fig. 4.

Using the Masing rule and the Richard model,
the unloading and reloading behavior of a PR
connection is given by:

k—k,)6, -0
M=m,-— L5629 ———k,(6,-0)

[ ((k~kp)(9,—e)” v
14+l % 7
M,

(6)

and Kc(8) for unloading and reloading status
is calculated using Equation (6) and can be
expressed as:

k—
k0= _ ®E)

a6 k—-k )6,-6
[H‘( —k,)6, -6)

war Tk, (7)
N]N

BRHATEZSE =23 H143 H43(2001.12) 541

M,



B

Z Wy e AYAEE Brlel G FEFS AT

If (My, 8b) is the next load reversal point, as
shown in Fig. 4, the reloading relation between
M and 6 and corresponding stiffness can be
obtained simply by replacing (Ma, 6a.) with
(Ms, 6v) in Equations (6) and (7). respectively.
Thus, the proposed method uses Equations (1)
and (3) when the connection is loading and
Equations (6) and (7) when the connection is
unloading and reloading. This represents hysteretic
behavior at the PR connections. The basic FEM
formulation of the structure remains unchanged
and the PR connections can be successfully in-
corporated for seismic loading with this approach.

2.4 Uncertainties in the Connection Model

For the reliability analysis of structures, all the
load and resistance-related parameters need to
be explicitly considered since they are expected
to have uncertainty in their estimates. In addition,
the uncertainties in connection behavior come
from uncertainties in the manufacturing and
assembly processes and also from modeling un-

15).16 C e L
'18 " Deterministic predictions of

certainties
connection behavior, based on either empirical
formulations or single test data, are likely to
overestimate the strength and stiffness of con-
nections. Since, in practice, parameters in a
typical M-8 curve are estimated from experi-
mental results using a curve-fitting technique,
deterministic curves do not account for the scatter
in the connection behavior and a computational
model needs to be set up to address the scatter
phenomenon adequately. To consider uncertainty
in modeling the behavior of PR connections in
this study, the four parameters in the Richard
mode] are considered to be the basic random
variables as shown in Fig. 5.

3. Stochastic Finite Element-Based Seismic
Risk Estimation

The proposed stochastic finite element-based
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Fig. 5 Random parameters of in the Richard Model

seismic risk estimation algorithm integrates the
concepts of RSM, FEM, FORM, and an iterative
linear interpolation scheme. Some of the essential
features are discussed below.

3.1 Systematic Response Surface Method

The primary purpose of applying RSM in
reliability analysis is to approximate the original
complex implicit limit state function!”1®1¥
using a simple explicit polynomial. At least a
second order polynomial is necessary for the type
of problem under consideration. In this study,
two types of second order polynomial(with and
without cross terms) are used to represent the

response surface. They can be expressed as:

k k
8(X)=b, + X bX, +3 b, X ®)
i=l i=l

8(X)=b, +ibixi +ibﬁxi2 +§zk“bijxixj (9)
i=l i=]

i=l j>i

where Xi(i=1, 2,..., k) is the i random variable,
and bo, bi, bi, and by are unknown coefficients
to be determined. The polynomial can be fully
defined from regression analysis or by solving a
set of simultaneous equations using information
on responses obtained at specific data points
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called sampling points. The selection of sampling
points where responses need to be calculated is
known as experimental design. Saturated design
and central composite design(CCD) could be
the two most promising techniques available to
generate sampling points. By considering the two
design methods and the form of the polynomial, the
three response surface models suggested by Huh"
are considered in this paper. They are Model (1):
saturated design using a second order polynomial
without cross terms: Model (2): saturated design
using a full second order polynomial: and Model
(3): CCD using a full second order polynomial.
Although the details of these models cannot be
presented here due to lack of space, they are
available in the literature’?1?.

To accurately and efficiently estimate the
probability of failure, it is necessary to improve
on the location of the center point in subsequent
iterations. Bucher & Bourgundm suggested an
iterative linear interpolation scheme that can
be used to locate the center point efficiently and
accurately. It can be mathematically represented

as:
g(xc)
= o+ —_ -
X, =X +(Xp —Xc) £ )—g0in) (10)
if glxp)2g(xc)
3 B g(xp,)
X, = Xp, +(Xc, XD‘)_g(xD,)‘g(xcl) an

it glxp ) <glxe)

where x., and x;, are the center point and the
checking point for the first iteration, and g(x,)
and g (Xp ) are the actual responses of the limit
state function estimated from dynamic FEM
analysis at X, and x, , respectively. The point
xc, can be used as a new center point for the
next iteration. This iteration scheme needs to
be continued until a preselected convergence

criterion is satisfied.

Throughout the iteration process, the three
models identified earlier need to be intelligently
integrated to achieve computational efficiency
and accuracy. The efficiency and accuracy of the
algorithm can be increased by applying two
promising schemes”?. They are: Scheme (1):
saturated design using a second order polynomial
without cross terms for the intermediate iterations
and saturated design using a full second order
polynomial for the final iteration: and Scheme (2):
saturated design using a second order polynomial
without cross terms for the intermediate iterations
and CCD using a full second order polynomial
for the final iteration.

3.2 Limit State Functions for Risk Esti-
mation

Risk has to be estimated with respect to a limit
state function. It is broadly divided into two
groups, i.e., the serviceability and strength limit
states. The proposed algorithm is capable of
calculating risk using both types of limit states.

For seismic loading, the serviceability limit state
corresponding to overall lateral displacement
is considered in this study. The general form of
a serviceability limit state can be represented
as:

g(X) = 8allow - Ymax (X) = 8allow - g(x) (12)

where § = is the allowable overall lateral dis-
placement specified in the applicable design
codes and Y, (X) is the corresponding maximum
overall lateral displacement estimated using the
proposed algorithm.

In this study, all the elements in the structural
system are considered as beam-columns subjected
to axial load and bending moment simultaneously.
For the strength limit state, interaction equations
suggested by the American Institute of Steel
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Construction’s(AISC’s) Load and Resistance Factor
Design(LRFD) manual? are thus used in this
study. They are:

P 8M_ | A A
g(X)=1.0—(P—n+—9‘ﬁ:]~1~0_[gp(X)+ng(X)l
P
if —4—>0.2
i o (13)

g<X>=1.0—(;; +%)=1.O—EP(X>+§MX<X)1

n nx

if ;‘; <02 (14)

n

where ¢ is the resistance factor, Py is the re-
quired tensile/compressive strength, Py is the
nominal tensile/compressive strength, Mu is the
required flexural strength and M, is the nominal
flexural strength. Pn and Mnx can be calculated
using AISC’s LRFD code. Huh and Haldar®
discussed the risk evaluation procedure for the
two limit states in detail elsewhere.

3.3 Solution Strategy

The solution strategy can be stated as follows.
First, the initial center point is assumed to be
the mean values of random variables for the
first iteration. The responses are calculated by
conducting nonlinear FEM at the experimental
sampling points for the response surface model,
that is, saturated design with the second order
polynomial without cross terms. A limit state
function is thus generated in terms of k basic
random variables. Using the explicit expression for
the limit state function and FORM, the reliability
index B, and the corresponding coordinates of
the checking point and direction cosines for each
random variable are obtained. The coordinate of
the new center point is obtained by applying the
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linear interpolation scheme(Equation (10) or (11)).
The updating of the location of the center point
continues until it converges to a predetermined
tolerance level. In the final iteration, the in-
formation on the most recent center point is
used to formulate the final response surface
using either saturated design with a full second
order polynomial or CCD with a full second order
polynomial depending on the number of random
variables. This gives an explicit expression of
the limit state function. The FORM method is
then used to calculate the reliability index and
the corresponding most probable failure point
(MPFP). The flowchart that shows the main steps
of the proposed algorithm is given in Fig. 6.

Set initial center point at
mean values of random

Py

Select Model

Generate experimental

sampling poins Number of sampling points

Estimate responses at all
experimental sampling points

Determine unknown coefficients for
the explicit performance function

Iteration Check
Final | FORM

Intermediate iteration iteration

Unsatisfied:
Intermediate iteration

Find the checking point

Calculate Reliability
Index, Sensitivity Indexes,
and the most probable
failure point (MPFP)

Apply a linear
interpolation

|Find the new center poin!l

Convergence Check

Satisfied: Final
iteration

Fig. 6 Flowchart of the Proposed Algorithm
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4. Numerical Example

To investigate the effect of flexibility in the
connections, the two-story one bay steel frame
structure shown in Fig. 7 is considered. The
beams and columns of the frame are made of
W27x84 and W14 X426, respectively, and A36
steel is used. To represent actual seismic loading
condition as closely as possible, the frame is
excited for 15 seconds by the actual acceleration
time history recorded at Canoga Park during the
Northridge earthquake of 1994(North-South com-
ponent) as shown in Fig. 8.

Both the serviceability and strength limit states
discussed in Section 3.2 [Equation (12), and
Equation (13) or (14), respectively] are considered
in this example. For the serviceability limit state,
the permissible lateral displacement at the top
of the frame is assumed to not exceed h/400,
where h is the height of the frame. For this
example, B iow becomes 1.905cm. For the strength
limit state, the weakest member(beam element
at d in Fig. 7) is investigated here.

q=29.19 kN/m
a b !
381 m
q=29.19 kN/m |
! ] y
c d1 “
Section for beams :  W27H84
Section for columns: W14H426
381 m
e { v
——— [ m

762m ™

(N - S Direction)

Northridge Earthquake Excitation
Fig. 7 Two-Story Steel Frame Structure
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Fig. 8 Northridge Earthquake Time History for 15
seconds(N-S)

The frame is first analyzed assuming the
members are connected rigidly (the connections
are FR type). This is denoted as Case 1. Then,
the four beam-to-column connections at a, b,
¢, and d shown in Fig. 7 are considered to be
partially restrained. In order to consider the
effects of different rigidities in the connections,
three M-6 curves(Curve 1, Curve 2, and Curve 3
in Fig. 9) representing very high, intermediate,
and very low rigidities, respectively, are considered.
They are denoted hereafter as Case 2, Case 3,
and Case 4, respectively. The random variables
associated with seismic loading and structural
resistance including the four parameters of the

L T . Curve 1
. —_—— - Curve 2
= : Curve 3
H
600 — " —
-
i P
H 14 -
! ¢ -
2 i e
$ a0 -
- ] -
-~
3 41 -
A
200 i .
t/
1
/
(o] T T T T T T T T T
0 0.004 0.008 0.012 0.018 0.02
© (radian)

Fig. 9 M-6 curves for connections
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Richard model representing the three curves and
their probabilistic descriptions, as available in
the literature, are listed in Tables 1 and 2 for
the serviceability and strength limit states,
respectively. The terms & and ge in Tables 1
and 2 stand for the damping coefficient expressed
as a percent of the critical damping and a para-
meter introduced to incorporate the uncertainty
in the amplitude of seismic acceleration, re-
spectively. All random variables are assumed to
be statistically independent for the numerical
calculation.

Using the proposed nonlinear SFEM algorithm,
the reliability indexes of the frame are estimated
for both limit states of all four cases. Scheme (2)
identified in section 3.1 is used to calculate
the reliability index for Case 1. Scheme (1) is
used to evaluate the reliability index for Case 2,
Case 3, and Case 4.

For the verification purpose, the results of
Case 1 and Case 2 for both the serviceability and
strength limit states are summarized in Table 3
in terms of reliability index, corresponding failure
probability, error, CPU time, and sensitivity

Table 1 Statistical Description of the Random Variables for Serviceability

Rand Mean Value
V::‘liai))rlz c 1 Case 2 Case 3 Case 4 Ccov Dist.
ase (Curve 1) (Curve 2) (Curve 3)

E(kN/m?) 1.9994 x10? 0.06 LN
AP(m?) 1.600x10* 0.05 LN
I’x(m") 1.186%107 0.05 LN
A*(m?) 8.065%10* 0.05 LN
I«(m") 2.747x10% 0.05 LN

& 0.05 0.15 LN
Ze 1.00 0.20 Type [
k(kN - m/rad) N/A 1.13%x10° 1.47x10° 5.65x10* 0.15 N
ko (kN - m/rad) N/A 1.13%X10° 1.13%x10* 1.13X10° 0.15 N
Mo(kN - m) N/A 508.64 452.12 339.09 0.15 N
N N/A 0.50 1.00 1.50 0.05 N
b=beam, c=column, N/A=Not Available, LN =Log-Normal, N=Normal
Table 2 Statistical Description of the Random Variables for Strength Limit State
Rand Mean Value
v:za(;)rlr; Case 1 Case 2 Case 3 Case 4 cov Dist.
ase (Curve 1) (Curve 2) (Curve 3)

E(kN/m? 1.9994 x 10° 0.06 LN

Fy(kN/m? 2.4822x10° 0.10 LN
I«(m") 1.186x10* 0.05 LN
Z"x(m®) 3.998x%10° 0.05 LN
I (m") 2.747x10°% 0.05 LN

§ 0.05 0.15 LN

ge 1.00 0.20 Type 1
k(kN - m/rad) N/A 1.13x10° 1.47x10° 5.65%x10° 0.15 N
ko(kN * m/rad) N/A 1.18x10° 1.13%10" 1.13x10° 0.15 N
Mo(kN * m) N/A 508.64 452.12 339.09 0.15 N
N N/A 0.50 1.00 1.50 0.05 N

b=beam, c=column, N/A=Not Available, LN=Log-Normal, N=Normal
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indexes of the random variables. The results are
compared with Monte Carlo simulation(MCS)
using 100,000 simulations, also shown in Table 3.
A super computer(SGI Origin 2000) was used for
the numerical calculation for both the proposed
algorithm and MCS. Table 3 shows that the
probability of failure for both limit states of
the two cases is very close to the MCS results
and the ratio of CPU time for MCS to that of
proposed algorithm ranges from 476 to 837.

The proposed algorithm is therefore viable and
efficient for the reliability analysis of nonlinear
structures with PR connections subjected to
seismic loading.

The behavior of the frame with rigid and PR
connections can be investigated by simply com-
paring the results given in Table 4, which show
the reliability indexes for both limit states of
all four cases. The reliability indexes for the
serviceability limit state decreased significantly

Table 3 Reliability Analysis Results

Limit State Serviceability Strength Limit State
Case Case 1 Case 2 Case 1 Case 2
Monte Carlo P 0.02887 0.10244 0.00002 0.00896
Simulation CPU Time(sec) 98183 107571 72949 106003
Scheme (2) (1) (2) (1)
B8 1.914 1.274 4.098 2.351
;’;’o"r‘l’f}fi Py 0.027792 0.10133 0.000021 0.00936
CPU Time(sec) 182.8 131.0 153.3 126.7
Error* 3.73 % 1.08 % -5.00 % -4.46 %
E -0.2389 -0.3515 -0.0826 -0.0745
A 0.0109 0.0003 - -
I’ -0.1290 -0.0785 0.0062 0.0053
2", - - -0.1785 -0.1667
A 0.0349 0.0142 - -
I’ -0.1118 -0.1272 -0.1183 -0.1243
Sensitivity 7' - - - -
Index 7 F, - - -0.3607 -0.3185
& -0.2792 -0.2670 -0.2589 -0.2438
g 0.9135 0.8825 0.8661 0.8279
k N/A -0.0367 N/A -0.3182
ko N/A -0.0478 N/A -0.0013
Mo N/A -0.0084 N/A -0.0484
[ N N/A -0.0066 N/A -0.0384

b=beam, c=column, N/A=Not Available

, Error* based on Pr

Table 4 Reliability Analysis Results

Limit State

FR Connection

PR Connections

Case 1 Case 2(Curve 1) Case 3(Curve 2) Case 4(Curve 3)
Serviceability Limit State £=1.914 B81=1.274 B2=-0.008 B83=-0.899
Strength Limit State _ _ _ _
(Beam Element at d) 8=4.098 B1=2.351 B2=2.558 B3=3.156
HRMATZBEE =2 14 MAB(2001.12) 547
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with the decrease in the rigidity of the PR
connections. The frame became very weak in
serviceability, particularly when PR connections
were represented by very flexible Curve 3. This
is expected since the PR connections make the
frame more prone to failure than FR connections
as in Case 1. Due to the redistribution of moment
in beam c¢-d, the reliability indexes for the strength
limit state also changed. However, the frame
is much more prone to failure in serviceability
than in strength, that is, the reliability indexes
for the serviceability limit state are much smaller
than those for the strength limit state, in most
cases. This implies that an unbraced steel frame
is more vulnerable to failure caused by lateral
displacement than by strength. The allowable
lateral deflection considered in the study, i.e.,
80w = (W/400), is appropriate for the static loading.
For dynamic and seismic loading this may be a
very conservative value.

From the example considered in this paper,
it is clear that the consideration of appropriate
connection rigidities and the uncertainty asso-
ciated with modeling them significantly affects
the reliability estimation of steel frame structures.
Therefore, it can be concluded that connection
rigidity should be taken into account appropriately
in reliability analysis of steel frame structures
subjected to seismic loading.

5. Conclusions

An efficient and accurate algorithm is proposed
to estimate the reliability of structures with PR
connections subjected to seismic loading in the
time domain. The flexibility of connections is
represented by the four-parameter Richard model.
The uncertainties in the loading and resistance-
related parameters and the parameters in the
Richard model are incorporated in the algorithm.
The earthquake loading can be applied in the form
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of time histories to excite structures, enabling
realistic consideration of earthquake loading.
The proposed algorithm intelligently integrates
the concepts of the finite element method, the
response surface method, the first order reliability
method, and the iterative linear interpolation
scheme. The iterative scheme suggested here
improves computational efficiency considerably.

With the help of an example, some of the
following conclusions can be made. The proposed
algorithm can be used to evaluate the risk as-
sociated with steel frame structures with and
without PR connections subjected to seismic
loading for both the serviceability and strength
limit states. It appears to be a very effective,
accurate and robust algorithm. The presence
of PR connections reduces the overall stiffness of
a steel frame structure and adds a major source
of energy dissipation in it, leading changes of its
dynamic characteristics. As a result, considering
PR connections and the uncertainties associated
with modeling them significantly affects reliability
estimation for steel frame structures. Also, the
serviceability limit state appears to be the critical
limit state for seismic loading. Consequently,
it may be stated that the common practice in
the profession of designing the frame for the
strength limit state with consideration of all
connections to be rigid is not appropriate and
may need to develop stricter and more realistic
code requirements for a steel frame structure,
particularly for aseismic design.
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