Proceedings of the Korea Information Processing Society Conference
/
2002.11c
/
pp.2403-2406
/
2002
현재의 단백질 구조비교 시스템들 사이의 호환성이나 상호작용성의 문제를 해결하고 단백질 구조를 비교하는 시스템을 신속히 개발하기 위해서 단백질 3차구조를 표현하기 위한 데이터를 추출하여 XML과 같은 표준 형식으로 기술된 데이터를 제공하는 것이 바람직하다. 이에 따라 단백질의 2차구조 구성요소와 그들 사이의 관계를 이용하여 단백질 구조를 기술하는 PSA가 제안되었으며, PSA를 기반으로 하여 단백질 데이터의 XML 표현기법인 PSAML이 제안되었다. 본 논문에서는 PSAML 데이터의 생성을 위하여 PDB에서 제공되는 데이터를 PSAML 형식으로 변환시키는 도구를 설계하고 구현하였다. 변환도구는 XML DOM과 Java를 이용하여 구현되었으며, 생성된 데이터는 단백질 구조 및 유사성을 비교하기 위한 단백질 구조비교 시스템에서 사용될 수 있다.
Protein contact map은 단백질 삼차구조에 대한 정보를 이차원의 이미지로 표현하는 방법의 하나로, 비교적 간략하지만 단백질 구조에 대한 핵심적 정보를 함축하고 있다. 이러한 단백질 구조를 바탕으로 단백질의 internal energy, solvation free energy, free energy 와 같은 열역학 함수를 도출할 수 있다. 본 연구에서는 이미지 인식에 대한 머신러닝 기법을 사용하여 단백질 구조를 함축하는 단백질의 contact map으로부터 단백질의 열역학적 함수를 예측하는 연구를 진행하였다. 단백질의 main-chain 간의 contact map, side-chain 간의 contact map, main-chain과 side-chain 간의 contact map 들로부터 단백질의 여러 가지 열역학적 함수를 예측하고자 했으며 최종적으로 Convolution Neural Network (CNN) 기법을 사용하여 단백질의 free energy를 ~18 kcal/mol의 범위에서 예측 가능함을 보였다. 본 연구를 바탕으로 단백질의 contact map과 열역학 함수 사이의 상관관계가 있으며, 머신러닝 기법을 사용하여 단백질 contact map으로부터 열역학적 함수를 예측하는 것이 가능함을 보였다.
Proceedings of the Korean Information Science Society Conference
/
2003.04a
/
pp.869-871
/
2003
단백질 부분 구조는 일종의 단백질 패턴으로써 진화적인 성질을 띄고 있다. 본 논문에서는 단백질 간의 열 안정성과 이러한 단백질 부분 구조 간의 관련성에 대해서 알아보고자 한다. 또한 오류 허용 알고리즘 (FT-Apriori)의 성능을 향상시킬 수 있는 효과적인 기법을 제안한다. 이러한 기법을 단백질 부분 구조에 적용시킴으로써 실제 단백질 데이터에서 그 효용성을 일아본다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.20
no.9
/
pp.1816-1821
/
2016
Protein secondary structure is important for the study of protein evolution, structure and function of proteins which play crucial roles in most of biological processes. This paper try to effectively extract protein secondary structure information from the large protein structure database in order to predict the protein secondary structure of a query protein sequence. To find more remote homologous sequences of a query sequence in the protein database, we used PSI-BLAST which can perform gapped iterative searches and use profiles consisting of homologous protein sequences of a query protein. The secondary structures of the homologous sequences are weighed combined to the secondary structure prediction according to their relative degree of similarity to the query sequence. When homologous sequences with a neural network predictor were used, the accuracies were higher than those of current state-of-art techniques, achieving a Q3 accuracy of 92.28% and a Q8 accuracy of 88.79%.
펩타이드와 단백질은 전사, 번역, 후번역 단계에 걸친 모든 생물학적 반응을 조절한다. 그러나 분자수준에서 구조와 기능에 대한 우리의 이해는 초보적인 수준이다. 구조와 기능의 연관성에 대한 문제는 펩타이드와 단백질 자체에 대한 것과는 좀 다르다는 것을 명확히 할 필요가 있다. Multidomain을 갖는 단백질은 작고 통합적이며, 구조적으로 제한된 부분으로 쪼개는 것은 천연 단백질의 활성을 모방하여 저분자의 nonpeptide를 설계하는데 있어서 주요한 일이다. 결정적인 역할을 수행하는 domain을 모방하는 것은 특이성과 치료 효과에 있어서 자연적으로 얻어지는 단백질 물질과 비교하여 이로운 특성을 갖을 수 있고 분자 인지 분야에 관한 연구에 유용한 단서를 제공한다(Chen etal., 1992). 한편 펩타이드는 환경에 의해 구조가 심하게 영향을 받아 특성이 쉽게 변한다(Marshall et al., 1978). 수용액 내에서 이러한 구조적 유동성 때문에 그들이 결합할 수용체나 생리활성을 띄는 구조를 결정하는 것은 어렵고 복잡한 일이다(Fauchre,1987; Hruby, 1987). 구조를 한정하면 이러한 결정을 매우 쉽게 할 수 있다(Hrubyet al., 1987). 단백질 모방학은 분자지각 연구에 강력한 수단이며, 복잡한 단백질과 펩타이드의 구조-기능관계를 탐구하고 분석하는데 독특한 방법이다. 이 장에서는 매우넓고 빠르게 확장되고 있는 Peptidomimetic연구를 간략히 소개하고 있다. 단 본문은 기술 범위를 N-Methylated 아미노산과 스테로이드 등으로 제한하여 소개한다.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.298-300
/
2004
바이오 인포메틱스에서의 데이터 검색은 DNA와 단백질 시퀀스에 대해서 주로 이루어지며, 지금까지의 연구는 주로 DNA와 단백질 1차 구조의 검색에 대해 이루어졌다. 단백질 2차구조는 1차구조 내 인접한 아미노산들의 공간적인 배열을 나타내며. 단백질의 기능을 예측하는데 중요한 3차구조의 지역적 아미노산의 특성을 나타낸다. 따라서 2차구조에 대한 검색은 단백질의 기능을 이해하는데 매우 중요한 역할을 한다[1]. 이 논문에서는 단백질 2차구조 및 질의 문자열을 세그먼트 단위로 나누고 검색하는 r41의 방법을 개선하여 세그먼트를 조합한 클러스터 구조 및 Look Ahead를 사용해 Exact Matching 및 Wildcard Matching 질의를 효율적으로 처리할 수 있는 기법을 제시한다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.22
no.1
/
pp.26-32
/
2018
The protein secondary structures are important information for studying the evolution, structure and function of proteins. Recently, deep learning methods have been actively applied to predict the secondary structure of proteins using only protein sequence information. In these methods, widely used input features are protein profiles transformed from protein sequences. In this paper, to obtain an effective protein profiles, protein profiles were constructed using protein sequence search methods such as PSI-BLAST and HHblits. We adjust the similarity threshold for determining the homologous protein sequence used in constructing the protein profile and the number of iterations of the profile construction using the homologous sequence information. We used the protein profiles as inputs to convolutional neural networks and recurrent neural networks to predict the secondary structures. The protein profile that was created by adding evolutionary information only once was effective.
The information about protein structure gives the clues for the function of protein. It is needed for the improvement for the efficacy and fast development of protein drugs. So, the studies visualizing the structure of protein effectively increase. Most studies of visualization focus on the structural prediction for protein or the improvement on the rendering speed. However, studies of information delivery depending on the form of protein visualization are very limited. The major objective of this study is to analyze the information representation goodness-of-fit for the patterns of the hybrid visualization with primary and secondary structures of protein. Those hybrid visualizations included the patterns which updated current representative visualization services, Chimera, PDB and Cn3D. Information factor to analyze information representation goodness-of-fit is assorted by protein primary structure, secondary protein structure, the location of amino acid and ratio information about protein secondary structure, based on the result of subject-analysis. Subject is the group of experts who are involved in protein drug development over 5 years. The result of this study shows the meaningful difference in the information representation goodness-of-fit by the patterns of hybrid visualization and proves the difference in the information by the pattern of visualization.
Proceedings of the Korea Information Processing Society Conference
/
2005.11a
/
pp.55-58
/
2005
단백질 구조로부터 단백질사이의 기능관계를 유추하는 일은 생명정보학에 있어서 중요한 연구과제이다. 여기서, 단백질 1차 구조로부터 단백질 기능관계의 예측이 용이한 진화적으로 가까운 종간에는, 아미노산 서열을 비교하여 결과를 획득하고, 진화적으로 먼 종간에는 단백질 3차 구조 및 표면구조를 종합적으로 활용함으로써, 단백질간의 기능관계를 보다 효율적이고 정확하게 예측할 수 있음을 보인다.
Li, Meijing;Lee, Heon Gyu;Saeed, Khalid E.K.;Shon, Ho Sun;Ryu, Keun Ho
Proceedings of the Korea Information Processing Society Conference
/
2009.04a
/
pp.379-382
/
2009
최근 단백질 기능 예측을 위한 서열비교와 구조비교 기법들은 정확한 분류가 가능한 반면, 새로운 단백질 기능 분류를 함에 있어서 많은 복잡도가 따른다. 따라서 이 논문에서는 보다 빠른 단백질의 구조 분류 및 예측을 위하여 출현 시퀀스(emerging sequence)를 기반으로 하는 분류기법을 제안하였다. 이 기법에서는 먼저, 출현 시퀀스 마이닝 알고리즘을 이용하여 단백질 서열 데이터로부터 4 가지의 단백질 2 차 구조 출현 시퀀스를 발견하고, SVM을 이용하여 단백질의 출현 시퀀스 속성으로부터 단백질의 2 차 구조를 예측하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.