• Title/Summary/Keyword: 구조물진동소음

Search Result 795, Processing Time 0.024 seconds

An Analysis of the Sound Propagation between Rooms with Different Mediums (서로 다른 매질을 갖는 격실사이의 음파전달해석)

  • Kim, Hyun-Sil;Kim, Jae-Seung;Lee, Seong-Hyun;Seo, Yun-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.5
    • /
    • pp.402-407
    • /
    • 2013
  • In this paper, an analysis of sound propagation between two rooms with different mediums is discussed. Statistical energy analysis (SEA) is used to consider energy equilibrium among subsystems associated with the sound pressure levels in two rooms and the vibration level of the wall between rooms. Effect of the sound radiation from the structure-borne noise of the wall on sound pressure level of the receiving room is investigated. For a numerical example, sound propagation between engine room and water tank joined by a steel plate whose size is $8.4{\times}4$ m, is considered. It is found that when the critical frequency of the plate is above the frequency range of interest, the sound pressure level in the water tank is dominated by sound transmission through the plate, while sound radiation from the structure-borne noise of the plate is negligible except low frequency range below 63 Hz.

A Case Study on the Application of Vibration Level Units in the Construction Phase (시공단계의 진동레벨 단위적용에 관한 사례 연구)

  • Choi, Hyung-Bin;Kim, Dong-Yeon
    • Explosives and Blasting
    • /
    • v.30 no.2
    • /
    • pp.86-97
    • /
    • 2012
  • Ground vibration induced by a bench blasting in the construction site should cause the damage to the structure and indirect damage to a human body, and the vibration level is most practical descriptor for regulating the damage to human body and peak particle velocity is the descriptor for direct damage assesment of the structure. Meantime, the vibration level has not been considered for the blasting design but this study is the case that apply not only peak particle velocity but also vibration level on the blasting design. Also, we strongly believe that this study will be helpful for the management in the blasting site which some civil appeal is concerned. Total 232 measurements of both ppv and vibration level was used to estimate the scale distance. When the regulating threshold was ppv 0.3 cm/s and vibration level 75 decibel, the charge per delay to be estimated with vibration level could be recommended by 1.2~1.4 times than it of ppv. So, it is proven that considering vibration level on the blasting design is reasonable for not only prevention of the civil appeals but also effective blasting. Again, the blasting design which follows the law, "Noise and Vibration Control Act" can actually serve good condition to carry much more economical and effective blasting. The instruments used for this study are the SV-1 model, as first instrument in korea which can measure vibration velocity and vibration level at the same time.

Beam-Column Junction Type Damper of Seismic Performance Enhancement for Structures (구조물의 내진성능 보강을 위한 보-기둥 접합형 감쇠장치)

  • Noh, Jung-Tae;Woo, Sung-Sik;Lee, Sang-Hyun;Chung, Lan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.855-863
    • /
    • 2009
  • In this study, a beam-column junction type damper is proposed which saves the inner and outer space for the installation of damping devices and allows easy adjustment of control performance The result of the numerical analysis indicated that the displacement response and base shear of a single degree of freedom system by seismic load, El Centro 1940 was reduced with yield moment of the joint hinge and the specific yield moment ratio $\delta$ of the joint hinge existed for the optimal seismic performance. In addition, the dynamic nonlinear characteristics, effects of yielding and dependence of natural period of bi-linear system with the junction type damper is identified. The analysis of multi-degree of freedom system showed that responses of the controlled structures was reduced significantly as the number of a story increases and yield moment ratio decreases when the system is excited by seismic load and sine wave. On top of that, it was also observed that energy dissipation at the joint connected with the dampers was remarkable during excitation.

  • PDF

Structural Dynamics Modification Using Surface Grooving Technique : The Effectiveness of Check board Pattern and Comparison the Algorithm for Initial Starting Point (그루브를 이용한 표면형상변형 동특성 변경법 : 체크무늬 그루브의 효용성과 초기 시작점의 선택 알고리즘에 대한 비교)

  • Park, Mi-You;Park, Young-Jin;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.128-131
    • /
    • 2005
  • Structural Dynamics Modification (SDM) is a very effective technique to improve structure's dynamic characteristics by adding or removing auxiliary structures. changing material properties and shape of structure. Among those of SDM technique, the method to change shape of structure has been mostly relied on engineer's experience and trial-and-error process which are very time consuming. In order to develop a systematic method to change structure shape, surface grooving technique is studied and successfully applied to HDD cover model. To check the effectiveness of this surface grooving technique, the grooved HDD cover design was manufactured using rapid prototyping and experimentally tested to prove the effectiveness of the grooving method as one of SDM techniques. And the modal strain energy and eigenvalue sensitivity method for choosing the initial starting point are compared.

  • PDF

Beat Map Drawing Method of Bell Type Structures and Beat Maps of the King Seong-deok Divine Bell (종형 구조물의 맥놀이 지도 작성법과 성덕대왕신종의 맥놀이 지도)

  • 김석현
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.8
    • /
    • pp.626-636
    • /
    • 2003
  • The beat distribution property of the King Seong-deok Divine Bell is investigated by experiment and analysis. The beat map method is proposed to explain the beat distribution property on the circumference of the bell. For the analytical investigation, an analytical model of the vibration beat is derived on a slightly asymmetric shell of revolution by using the modal expansion method. In the analytical method, the beat map can be drawn only if the modal parameters of the bell are obtained. The analytical beat model is applied to draw the beat map of the King Seong-deok Divine Bell. The validity of the analytical method is verified by comparing the analytical beat maps with the experimental results. This paper proposes a visualization method of the beat and theoretically identifies the reason why the clear and unclear beats repeat periodically along the circumference of the bell and how the striking position influences the beat distribution property.

Equivalent damping ratio based on earthquake characteristics of a SDOF structure with an MR damper (지진특성에 따른 MR 감쇠기가 설치된 단자유도 구조물의 등가감쇠비)

  • Moon, Byoung-Wook;Park, Ji-Hun;Lee, Sung-Kyung;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.459-464
    • /
    • 2007
  • Seismic control performance of MR dampers, which have severe nonlinearity, differs with respect to the dynamic characteristics of an earthquake such as magnitude, frequency and duration. In this study, the effects of excitation characteristics on the equivalent linear system of a building structure with the MR damper are investigated through numerical analysis for artificial ground motions generated from different response spectrums. The equivalent damping ratio of the structure with the MR damper is calculated using Newmark and Hall's equations for ground motion amplification factors. It is found that the equivalent damping ratio of the structure with the MR damper is dependent on the ratio of the maximum friction force of the MR damper over excitation magnitude. Frequency contents of the earthquake ground motion affects the equivalent damping ratio of long-period structures considerably. Also, additional damping effect caused by interaction between the viscousity and friction of the MR damper is observed. Finally, response reduction factors for equivalent linear systems are proposed in order to improve accuracy in the prediction of the actual nonlinear response.

  • PDF

Excitation System for Simulating Wind-induced Responses of a Building Structure using an Active Tuned Mass Damper (ATMD를 이용한 건축 구조물의 풍응답 구현을 위한 가진시스템)

  • Park, Eun-Churn;Lee, Sang-Hyun;Min, Kyung-Won;Kang, Kyung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.210-215
    • /
    • 2007
  • In this paper, excitation systems using an active tuned mass damper (ATMD) are presented in order to simulate the wind induced responses of a building structure. The actuator force for the excitation systems is calculated by using the inverse transfer function of a target structural response to the actuator. The analyses results from a 76-story benchmark building problem in which wind load obtained by wind tunnel test is given, indicate that the excitation system installed at a specific floor can approximately embody the structural responses induced by the wind load applied to each floor of the structure. The excitation system designed by the proposed method can be effectively used for evaluating the wind response characteristics of a practical building structure and for obtaining an accurate analytical model of the building under wind load.

  • PDF

The Effect of Seismic Level Increase on the Reactor Vessel Internals and Fuel Assemblies for the Korean Standard Suclear Power Plant (지진레벨의 증가가 한국표준형 원자력발전소의 원자로 내부구조물 및 핵연 료 집합체에 미치는 영향)

  • Jhung, M. J.
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.33-41
    • /
    • 1997
  • To cover a range of possible site conditions where the Korean standard nuclear power plant may be constructed, a range of generic site conditions is selected for geologic and seismologic evaluation. To envelop other Asian countries as well as the Korean peninsula, there is an attempt to increase the seismic level to 0.3g ground motions for the safe shutdown earthquake. The dynamic analyses of the reactor vessel internals and fuel assemblies are performed for the increased motions and the effect of seismic level on the response is investigated. Also the nonlinear response characteristics are discussed by comparing the loads between operating basis earthquake and safe shutdown earthquake excitations. The design adequacy of the reactor vessel internals and fuel assemblies for the increased seismic level is addressed.

  • PDF

Response Spectra of Structure Installed Frictional Damping System (마찰형 감쇠를 갖는 구조물의 응답 스펙트럼)

  • Park, Ji-Hun;Youn, Kyong-Jo;Min, Kyung-Won;Lee, Sang-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.893-897
    • /
    • 2006
  • Structures with additional frictional damping system have strong nonlinearity that the dynamic behavior is highly affected. by the relative magnitude between frictional force and excitation load. In this study, normalized response spectra of the structures with non-dimensional friction force are obtained through nonlinear time history analyses of the mass-normalized single degree of freedom systems using 20 ground motion data recorded on rock site. The variation of the control performance of frictional damping system is investigated in terms of the dynamic load and the structural natural period, of which effects were not considered in the previous studies. Least square curve fitting equations are presented for describing those normalized response spectrum and optimal non-dimensional friction forces are obtained for controlling the peak displacement and absolute acceleration of the structure based on the derivative of the curve fitted design spectrum.

  • PDF

Experimental Modal Analysis of Perforated Rectangular Plates Submerged in Water (물에 잠긴 다공 직사각평판의 실험적 모드 해석)

  • Yoo, Gye-Hyoung;Lee, Myung-Gyu;Jeong, Kyeong-Hoon;Lee, Seong-Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.416-421
    • /
    • 2002
  • This paper dealt with an experimental study on the hydro-elastic vibration of clamped perforated rectangular plates submerged in water. The penetration of holes in the plates had a triangular pattern with P/D (pitch to diameter) 1.750, 2.125, 2.500, 3.000 and 3.750. The natural frequencies of the perforated plates in air were obtained by the analytical method based n the relation between the reference kinetic and maximum potential energy and compared with the experimental results. Good agreement between the results was found for the natural frequencies of the perforated plates in air. It was empirically found that the natural frequencies of the perforated plate in air increase with an increase of P/D, on the other hand, the natural frequencies of the perforated plate in contact with water decrease with an increase of P/D. Additionally, the effect of the submerged depth on the natural frequency was investigated.

  • PDF