• Title/Summary/Keyword: 구리 영향

Search Result 765, Processing Time 0.029 seconds

Chronic Toxicity of the Juvenile Olive Flounder, Paralichthys olivaceus Exposed to Copper (구리 노출에 따른 넙치, Paralichthys olivaceus 치어의 만성독성)

  • 강주찬;김재원;김성길;황운기
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.1
    • /
    • pp.36-41
    • /
    • 2003
  • In order to estimate chornic toxicity of copper in the juvenile oliver flounder, Paralichthys olivaceus, experiments were investigated the effects of long term sublethal copper exposure on survival rate, metabolic rate, feed efficiency and growth rate. Oliver flounder were exposed for 6 weeks to four different sublethal copper concentration (50, 80, 180, 320 $\mu\textrm{g}$ $L^{-1}$). Survival rate of them significantly affected above 180 $\mu\textrm{g}$ $L^{-1}$, and reduced for increase exposure periods and concentrations. Copper exposure to 180 and 320 $\mu\textrm{g}$ $L^{-1}$ significantly decreased metabolic rate in olive flounder. Exposure to waterborne copper concentrations as high as 80 $\mu\textrm{g}$ $L^{-1}$ resulted in significantly reduced feed efficiency and growth rate. From these results, it could be concluded that the high level of 80 $\mu\textrm{g}$ $L^{-1}$ copper concentration in the bottom water would curtail production of the olive flounder in coastal area.

Effects of Repetitive using Lime Bordeaux Mixture in the Copper Concentration of the Soil and Ginseng Root (석회보르도액 반복 사용이 토양과 인삼 체내 구리농축에 미치는 영향)

  • Jung, Won-Kwon;Ahn, Deok-Jong;Choi, Jin-Kook;Ryu, Tae-Suk;Jang, Myeong-Hwan;Kwon, Tae-Ryong;Park, Jun-Hong;Park, Sang-Jo
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.4
    • /
    • pp.404-408
    • /
    • 2014
  • Three type of Lime Bordeaux mixture (LBM) that has been used since 1800's for control plant disease are used for eco-friendly ginseng (Panax ginseng) disease control. But it was restricted the use in the crops cultivation in some countries of Europe recently, because there is a possibility that the copper component is concentrated in the soil and plants with using LBM containing copper. According to the concentration and number of LBM spraying treatment, it was investigated copper and other components in soil and ginseng root. In case of LBM sprayed 33 times for three years, copper concentration was increased up to 75.9 ppm in the soil. However copper concentration of ginseng root was increased with 9.9~23.0 mg/kg in comparison with 8.38~11.39 mg/kg at LBM non-treatment. It has shown that the copper components can be concentrated to in the soil if used continuously in the long term.

Copper Toxicity on Survival, Respiration and Organ Structure of Mactra veneriformis (Bivalvia: Mactridae) (동죽, Mactra veneriformis의 생존, 호흡 및 기관계 구조에 미치는 구리 (Cu)의 독성)

  • Shin, Yun Kyung;Park, Jung Jun;Lim, Hyun Sig;Lee, Jung Sick
    • The Korean Journal of Malacology
    • /
    • v.29 no.2
    • /
    • pp.129-137
    • /
    • 2013
  • This study was conducted to find out the changes of survivorship, respiration and organ structure of Mactra veneriformis exposed to copper (Cu). Experimental period was four weeks. Experimental groups were composed of one control condition and three copper exposure conditions (0.025, 0.050 and 0.100 mg/L). The results of the study confirmed that copper induces reduction of survival rate and respiration rate and histopathology of organ structure of the bivalve. In the copper concentration of 0.100 mg/L, mortality was 100% after Cu exposure of 3 weeks. Respiration rate was observed exposure groups lower than control decline by 75%. Histological analysis of organ system illustrated expansion of hemolymph sinus, disappearance of epidermal layer and degeneration of connective tissue layer of the mantle. Also, histological degenerations as epithelial necrosis and hyperplasia of mucous cells are recognized in the gill and it was observed expansion of hemolymph sinus, disruption of epithelial layer, decrease of mucous cell and degeneration of connective tissue layer in the foot. In the digestive diverticulum, it was showed atrophy of basophilic cell and degeneration of epithelial cell in the digestive tubules, and as the concentration of copper increased the accumulation of lipofuscin increased.

Identification and Characterization of External Copper Responsive Genes of Deinococcus radiodurans (DNA Microarry를 이용한 Deinococcus radiodurans의 구리이온 특이 반응 유전자 탐색 및 특성 분석)

  • Joe, Min-Ho;Lim, Sang-Yong;Jung, Sun-Wook;Song, Du-Sub;Choi, Young-Ji;Kim, Dong-Ho
    • Korean Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.169-177
    • /
    • 2008
  • Global gene expression of Deinococcus radiodurans, a highly radiation resistant bacterium, in response to excess copper was analyzed by using oligonucleotide microarray chip. Among 3,187 open reading frames of D. radiodurans, seventy genes showed a statistically significant expression ratio of at least 2-fold changes under growth conditions of excess copper; 64 genes were induced and 6 genes were reduced. Especially, two operons ($DRB0014{\sim}DRB0017$ and $DRB0125{\sim}DRB0121$) presumably involved in the iron transport and utilization were the most highly induced genes by excess copper. A quantitative real-time PCR assay revealed that DRB00l4 and DRB0125 are highly transcribed responding to excess copper and 2,2'-dipyridyl, an iron chelator. In addition, the transcription of both genes was not changed by excess iron and bathocuproine disulphonate, a copper chelator. These results suggested that the copper metabolism may be closely connected with the iron transport and utilization in D. radiodurans. However, the disruption of each gene, DRB00l4 and DRB0125, did not affect the copper and radiation resistance, the most well-known character of this organism.

Studies on the Interfacial Reaction between Electroless-Plated UBM (Under Bump Metallurgy) on Cu pads and Pb-Sn-Ag Solder Bumps (Cu pad위에 무전해 도금된 UBM (Under Bump Metallurgy)과 Pb-Sn-Ag 솔더 범프 계면 반응에 관한 연구)

  • Na, Jae-Ung;Baek, Gyeong-Uk
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.853-863
    • /
    • 2000
  • In this study, a new UBM materials system for solder flip chip interconnection of Cu pads were investigated using electroless copper (E-Cu) and electroless nickel (E-Ni) plating method. The interfacial reaction between several UBM structures and Sn-36Pb-2Ag solder and its effect on solder bump joint mechanical reliability were investigated to optimife the UBM materials design for solder bump on Cu pads. Fer the E-Cu UBM, continuous coarse scallop-like $Cu_{6}$ $Sn_{5}$ , intermetallic compound (IMC) was formed at the solder/E-Cu interface, and bump fracture occurred this interface under relative small load. In contrast, Fer the E-Ni/E-Cu UBM, it was observed that E-Ni effectively limited the growth of IMC at the interface, and the Polygonal $Ni_3$$Sn_4$ IMC was formed because of crystallographic mismatch between monoclinic $Ni_3$$Sn_4$ and amorphous E-Ni phase. Consequently, relatively higher bump adhesion strength was observed at E-Ni/E-Cu UBM than E-Cu UBM. As a result, it was fecund that E-Ni/E-Cu UBM material system was a better choice for solder flip chip interconnection on CU PadS.

  • PDF

Preconcentration and Extraction of Copper on Activated Carbon Using 4-Amino-2, 3-dimethyl-1-phenyl-3-pyrazoline or 4-(4-methoxybenzylidenimin) thiophenole (4-Amino-2,3-dimethyl-1-phenyl-3-pyrazoline 또는 4-(4-Methoxybenzylidenimin)thiophenole을 이용한 활성탄에서의 구리의 예비 농축 및 추출)

  • Ghaedi, Mehrorang;Ahmadi, Farshid;Karimi, Hajir;Gharaghani, Shiva
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.1
    • /
    • pp.23-31
    • /
    • 2006
  • carbon modified methods were used for the preconcentration and determination of copper in some real samples using the flame atomic absorption spectrometry. The copper ions was adsorbed quantitatively on the activated carbon due to their complexation with 4- amino-2, 3-dimethyl-1-phenyl-3-pyrazoline (ADMPP) or 4-(4- methoxybenzylidenimin) thiophenole (MBITP). The adsorbed copper on solid phase was eluted quantitatively using small amount of nitric acid. The influence of important parameters including pH, amount of carrier, flow rate, amount of activated carbon and type and concentration of eluting agent for obtaining maximum recovery were investigated. The methods based on ADMPP and MBITP at optimum conditions is linear over concentration range of 0.05-1.5 g mL-1 and 0.05-1.2 g mL-1 of copper with correlation coefficient of 0.9997 and 0.9994 and both detection limit of 1.4 ng mL-1, respectively. The preconcentration leads to enrichment factor of 310 and break through volume of 1550 mL for both ligands. The method has a good tolerance limit of interfering ion and a selectivity that has been successfully applied for the determination of copper content in real sample such as tap, spring, river and waste water.

Characteristics of Heavy Metal Resistant Plasmid in Enterobacter cloaceae K41 (Enterobacter cloaceae K41 plasmid의 중금속 저항성)

  • Kim Young-Hee;Lee Sang-Jun;Jeong Yong-Kee;Chung Kyung-Tae
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.566-571
    • /
    • 2005
  • A natural habitat bacterium, Enterobacter cloaceae K41 was isolated from fresh water plant root and identified. This strain was used to investigate heavy metal resistance. The optimal growth conditions of the bacterium were LB medium containing$1\%$ yeast extract, $1\%$ lactose, $1\%$ NaCl, pH 7.0, at $37^{\circ}C$, and for 24 hours on a shaker. The minimal inhibitory concentration (MIC) of heavy metals against E. cloaceae KCTC2519 and E. cloaceae K41 was compared. The MIC of E. cloaceae K41 was 150 ppm in Cu, 50 ppm in Cd whereas that of the standard strain was 50 ppm in Cu but no growth was observed either Cd or two mixed heavy metal solution. The presence of plasmid was cleared from the isolated strain whereas no possession from the standard strain. The plasmid from E. cloaceae K41 was transformed into E. coli $DH5{\alpha}$. The MIC of transformed strain increased resistance 7 times in Cu and 6 times in Cd by insertion of this plasmid. The metal adsorption of the transformant was increased 1.3 times in Cu and 1.5 times in Cd indicating the plasmid was responsible for heavy metal resistance.

Metalorganic Chemical Vapor Deposition of Copper Films on TiN Substrates Using Direct Liquid Injection of (hfac)Cu(vtmos) Precursor ((hfac)Cu(vtmos)의 액체분사법에 의한 TiN 기판상 구리박막의 유기금속 화학증착 특성)

  • Jun, Chi-Hoon;Kim, Youn-Tae;Kim, Dai-Ryong
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1196-1204
    • /
    • 1999
  • We have carried out copper MOCVD(metalorganic chemical vapor deposition) onto the reactive sputtered PVD-TiN and rapid thermal converted RTP-TiN substrates using direct liquid injection for effective delivery of the (hfac)Cu(vtmos) [$C_{10}H_{13}O_{5}CuF_{6}$Si: 1,1,1,5,5,5-hexafluoro-2,4- pentadionato (vinyltrimethoxysilane) copper (I)] precursor. Especially, the influences of deposition conditions and the substrate type on growth rate, crystal structure, microstructure, and electrical resistivity of copper deposits have been discussed. It is found that the film growth with 0.2ccm precursor flow rate become mass-transfer controlled up to Ar flow rate of 200sccm and pick-up rate controlled at a vaporizer above 1.0Torr reactor pressure. The surface-reaction controlled region from 155 to 225$^{\circ}C$ at 0.6Torr reactor pressure results in the apparent activation energies of 12.7~14.1kcal/mol, and above 224$^{\circ}C$ the growth rate with $H_2$ addition could be improved compared to the pure Ar carrier. The Cu/RTP-TiN structures which have high copper nucleation density in initial stage of growth show more pronounced (111) preferred orientations and lower electrical resistivities than those on PVD-TiN. The variation of electrical resistivity with substrate temperature reflects the three types of film microstructure changes, showing the lowest value for the deposit at 165$^{\circ}C$ with small grains of good contacts.

  • PDF

Application in Conductive Filler by Low-Temperature Densification and Synthesis of Core-Shell Structure Powder for Prevention from Copper Oxidation (구리 산화 방지를 위한 Core-Shell 구조 입자 합성과 저온 치밀화를 통한 도전성 필러 응용)

  • Shim, Young Ho;Park, Seong-Dae;Kim, Hee Taik
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.554-560
    • /
    • 2012
  • Recently, it has been increasing trend to use conductive materials as electronics and communication technology in electronics industry are developing. The noble metal such as Ag, Pt, Pd etc. are mostly used as conductive materials, To reduce production cost, alternative materials with similar characteristics of noble metals are needed. Copper has advantages, i.e its electronic properties are similar to noble metals and low cost than noble metal, but its use has been restricted because of oxidation in air. In this study, the tin film was coated on copper by electroless plating to protect copper from oxidation and to confirm the effects of temperature, pH, amount of $SnCl_2$, and feeding speed in plating conditions. Additionally, we apply $Cu_{core}Sn_{shell}$ powder as conductive filler with low-temperature densification and analysis by SEM, XRD, FIB and 4-Point Probe techniques. As result of the study, tin film was coated well on copper and was protected from oxidation. After low-temperature densification treatment, the meted tin made chemical interconnections with copper. Accordingly, conductivity was increased than before condition. We hope $Cu_{core}Sn_{shell}$ powder to replace noble metals and use in the electronic field.