• Title/Summary/Keyword: 구리 무전해 도금

Search Result 83, Processing Time 0.031 seconds

Study on the Formation Mechanism of Electroless Plating Seeds on Polymer by Laser (레이저에 의한 폴리머상의 무전해 도금 시드 형성 메커니즘 연구)

  • Paik, Byoung-Man;Lee, Jae Hoon;Shin, Dong-Sig;Lee, Kun-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.41-47
    • /
    • 2012
  • The LDS(Laser Direct Structuring) is one of the new direct writing methods to fabricate conductive patterns by energy beam. It uses thermoplastic polymers with an additive compound that serves as plating seed after the activation by laser. The advantages of LDS include the miniaturization of electrical components, design flexibility, and a reduced number of production steps. The purpose of this study is to investigate the fundamental mechanism for LDS and the characteristics of conductive patterns by laser parameters. These results were studied by SEM, EDX, and XPS analysis. We have used a 20W pulse-modulated fiber laser and copper electroless plating to fabricate conductive patterns on polymer. The result showed that electroless copper plating seed caused the laser cracking of additive compound. In particular, the additive compound contained in copper metal oxides atoms will be changed to copper metal elements. Also, the characteristics of conductive patterns were dependent on laser parameter, especially laser fluence.

Fabrication of Micro-Heatsink using Nanotemplate (나노 템플레이트를 이용한 마이크로 히트 싱크)

  • 함은주;손원일;홍재민
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.1
    • /
    • pp.7-11
    • /
    • 2003
  • The semiconductor chips or electronic components generate heat, which causes malfunction of the parts when it was not cooled properly. Bulky heat sink and cooling fan are used to get rid of the heat. However, with this bulky system, it is hard to integrate the electronics system in a small scale. The cooling efficiency of the system depends on the surface area of the heat sink, thermal conductivity of the material and the method of integration. In order to develop a novel cooling system, a micro-heatsink with a large surface area while retaining small volume was fabricated by electroless deposition of gold/copper inside a Track-etched membrane. The structure of the micro-heatsink was investigated using SEM or optical microscope. It was also found that the micro-heatsink is more efficient than a flat copper plate.

  • PDF

An Improvement in the Properties of MH Electrode of Ni/MH Battery by the Copper Coating (Ni/MH 전지에서 Cu 도금에 의한 음극활물질의 전극 특성 향상)

  • Cho, Jin Hun;Kim, In Jung;Lee, Yun Sung;Nahm, Kee Suk;Kim, Ki Ju;Lee, Hong Ki
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.568-574
    • /
    • 1997
  • The effect of microencapsulation of maetal hydride (MH) with copper on the electrode performance of a Ni/MH battery has been investigated. The MH electrodes were prepared with a combination of cold press and paste methods. The discharge capacity of the electrode increased with an addition of small amounts if CMC into the electrode, but decreased when heat-treated in an oxygen-free nitrogen flow. The capacity of a Cu-coated $LaNi_5$ electrode was higher than that of LaNi5electrode. The discharge capacity of the electrode prepared with Cu-coated $LaNi_5$ increased with the increase of copper content in the electrode. It is considered that the increase of copper content enhanced the current density on the electrode surface, leading to the increase of the discharge capacity The MH electrode coated by an acidic electroless plating method showed much higher discharge capacity than that using an alkaline electroless plating method. The discharge capacity of the $LaNi_{4.5}Al_{0.5}$ electrode was higher than that of the $LaNi_5$ electrode. Also, the effect of microencapsulation on the deactivation of $LaNi_5$ was studied using an absorption-desorption cycle in CO-containing hydrogen.

  • PDF

Electroless plating of buried contact solar cell (전극함몰형 태양전지의 무전해도금)

  • Dong Seop Kim;Eun Chel Cho;Soo Hong Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.1
    • /
    • pp.88-97
    • /
    • 1996
  • The metallization is the key to determining cell costs, cell performance, and system reliability. Screen printing technology suffers from several limitations affecting mainly the front grid. The buried contact solar cell (BCSC) was specifically desinged to be compatible with low cost, mass production techniques and avoid the conventional metallization problem. By using electroless plating technique, we performed this metallization inexpensively and reliably. This paper presents the details of the optimization procedure of metallization schemes on laser grooved cell surfaces. Commercially available Ni, Cu and Ag plating solutions were applied for the cell metallization. The application of those solutions on the buried contact front metallization has resulted in an cell efficiency of 18.8%. The cell parameters are an open circuit voltage of 651 mV, short circuit current density of 37.1 mA/$\textrm{cm}^2$, and fill factor of 77.8 %. The efficiency of over 18 % was achieved in the above 90% of the batch.

  • PDF

Effects of Surfactant and Preplate Process on Electroless Copper Plating on Carbon Nano-fiber (탄소나노섬유 표면 구리 무전해 도금에 미치는 분산제와 도금 전처리의 영향)

  • Han, Jun-Hyun;Seok, Hyun-Kwang;Lee, Sang-Soo;Jee, Kwang-Koo
    • Journal of Powder Materials
    • /
    • v.16 no.2
    • /
    • pp.131-137
    • /
    • 2009
  • This paper deals with the effects of the surfactant and preplate process (sensitization and activation) on electroless copper plating on carbon nano-fiber (CNF). Ultrasonic irradiation was applied both during dispersion of CNF and during electroless plating containing preplate process. The dispersion of CNF and flatness of the plated copper film were discussed based on the changes in surfactant concentration and preplate process time. It was clearly shown that high concentration of surfactant and long time of preplate process could promote the agglomeration of CNF and uneven copper plating on CNF.

Plating Rate of Electroless Nikel-Copper-Phosphorus Plating and Change in Microhardness and Corrosion Rate depending on. Heat treatment (무전해 니켈-구리-인 도금의 도금속도와 열처리에 따른 경도 및 내삭성 변화)

  • 오이식;황용길
    • Journal of the Korean institute of surface engineering
    • /
    • v.23 no.4
    • /
    • pp.208-217
    • /
    • 1990
  • Electroless Ni-Cu-P plating was performed was performed to investigate for plating and changes in microhardness and corrosion rate of of electroless deposits depending on heat treatment. The activation energy for $75~85^{\circ}C$ were calculated to be 66.7KJ/mole. Plating rate increased to 34% with addition of 200ppm of NaF and 0.8ppm of thiourea to the bath. The highest hardness value was obtained by heat treatment deposits layer at$ 400^{\circ}C$, 1 hour. The increase in hardness of deposits by heating was confirmed to be associated with crystallization of the amorphous deposits. Corrosion resistance of deposir layer, which had been heated up to $300^{\circ}C$, was found to be exellent when immersed in 1N-H2SO4 solution, Change of the corrosion resistance seems to have some important bearing on content of amorpous, Ni3P and Cu3P.

  • PDF

A study on Manufacture of EMI Composite Powder by the Electroless Ni Plating Method (무전해 니켈도금방법을 이용한 EMI 복합분말제조에 관한 연구)

  • Joung, I.;Yoon, S.R.;Han, S.N.;Na, J.H.;Kim, C.W.
    • Korean Journal of Materials Research
    • /
    • v.8 no.5
    • /
    • pp.444-449
    • /
    • 1998
  • There are various shielding materials that have been considered; the use of a metallic plate or the layering of a conductive material on a plastic surface and the insertion of filler in plastics. All of these methods have shown their merits and weakness. Therefore, many studies have concentrated on developing materials that effectively cut down EMI without increase in weights of housing materials. In these respects, this study has focused on investigations of the shielding effect of materials that have electroless nickel plating on the lamella structured micro particles surface with low specific gravity. When a film of electroless nickel were plated on a micro particle surfaces and then mixed with paint, the electromagnetic shielding effects were measured as 63dB. Although these effects were less than that 90dB of the copper plate, trials in a series of 6 times increased the shielding effect by IOdB and is applicable to wide range of EMI shielding.

  • PDF

Effects of Process Variables on Preparation of Silver-Coated Copper Flakes Using Hydroquinone Reducing Agent (하이드로퀴논 환원제를 사용한 은코팅 구리 플레이크의 제조에서 공정 변수의 영향)

  • Chee, Sang-Soo;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.57-62
    • /
    • 2017
  • In the process for preparing Ag-coated Cu flakes by electroless silver plating using hydroquinone reducing agent, Ag coating qualities were compared by changing various process parameters such as type of pretreatment solution, plating temperature, pH of plating solution, type and injection rate of plating solution, and pulp density. Effective pretreatment solution for removing the oxide layer on a Cu flake was preferentially suggested. The conditions of low plating temperature, pH value of 4.34, slow injection rate of Ag plating solution, elimination of deionized water in the Ag plating solution, and high pulp density significantly suppressed the formation of separated tiny Ag particles, and thus the surface coverage of Ag coating on Cu flakes was enhanced.

Effect of Plating Conditions on Electroless Copper Plating on SiC Fabric (직조된 SiC 섬유에 무전해 구리도금 시 도금 조건의 영향)

  • Lee, Kee Hwan;Sohn, Youhan;Han, Taeyang;Lee, Kyung Jin;Kim, Hye Hung;Han, Jun Hyun
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.4
    • /
    • pp.244-250
    • /
    • 2017
  • Effects of plating conditions (dispersant concentration, plating time, and ultrasonication) on electroless Cu plating on SiC fabric woven by crossing of SiC continuous fibers vertically were studied. The ultrasonic dispersion treatment not only did not improve the dispersion of the SiC fibers, but also did not change the plating thickness. The ultrasonication in the pretreatment step of electroless plating did not improve the dispersion of the fibers, while the ultrasonication in the plating step enhanced the dispersion of the fibers and decreased the thickness of the Cu films. It was possible to control the thickness of the Cu coating layer as well as the dispersion of the fibers in the fabric by changing the plating conditions such as dispersant concentration, plating time, and ultrasonication, but it was very difficult to coat copper on the intersection of vertical fibers in the fabric.

다차원 구조의 그래핀-산화구리 나노선 복합 필러의 열전도도 특성

  • Ha, In-Ho;Lee, Han-Seong;An, Yu-Jin;Park, Ji-Seon;Seo, Mun-Seok;Jo, Jin-U;Lee, Cheol-Seung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.433.2-433.2
    • /
    • 2014
  • 그래핀(graphene)은 탄소나노튜브(CNTs)에 비해 가격 경쟁력이 있고 우수한 광투과성과 전기 및 열 전도성을 갖고 있어 반도체 소재, 방열 소재, 접점 소재 등에 적용 가능성이 높은 재료로 주목받고 있다. 특히 모바일 디바이스의 소형화, 고집적화 등의 이슈로 인해 그래핀 소재의 방열 소재 적용을 위해 다양한 연구가 진행되고 있다. 한편 산화 구리 나노선(CuO Nanowire)은 전기 및 열전도도가 우수하고 1차원 나노 구조는 부피대비 큰 표면적, 종횡비가 커서 뛰어난 열전도 구조로서 방열 소재로 응용되기 좋은 조건을 갖고 있다. 본 연구에서는 2차원 구조의 그래핀 나노플레이트(Graphene Nanoplatelet)와 1차원 구조의 CuO NW를 하이브리드화를 통해 열전도도 향상를 개선시키고자 하였다. 소재 합성은 GNP에 Cu 무전해 도금을 진행한 후 열산화 방식을 적용하여 CuO NW를 직접 성장시키는 방식으로 진행하였다. 합성된 GNP-CuONWs 다차원 나노구조체의 열전도도 측정은 에폭시에 분산시켜 레이져 플레쉬법을 이용하였다. 미세 구조 관찰 결과, CuO NW 성장 거동은 열처리 온도 및 시간 그리고 O2 가스의 순환 환경이 주요인자로 작용하는 것을 확인하였다. 열전도도 향상은 다차원 구조의 특성으로 인해 면접촉과 선접촉이 동시에 이루어졌기 때문인 것으로 분석되었으며, 이러한 CuO NWs morphology와 열전도도 향상과의 상관 관계에 대해 논의할 것이다.

  • PDF