• Title/Summary/Keyword: 구름예측

Search Result 87, Processing Time 0.018 seconds

Design Optimization of Multi-element Airfoil Shapes to Minimize Ice Accretion (결빙 증식 최소화를 위한 다중 익형 형상 최적설계)

  • Kang, Min-Je;Lee, Hyeokjin;Jo, Hyeonseung;Myong, Rho-Shin;Lee, Hakjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.445-454
    • /
    • 2022
  • Ice accretion on the aircraft components, such as wings, fuselage, and empennage, can occur when the aircraft encounters a cloud zone with high humidity and low temperature. The prevention of ice accretion is important because it causes a decrease in the aerodynamic performance and flight stability, thus leading to fatal safety problems. In this study, a shape design optimization of a multi-element airfoil is performed to minimize the amount of ice accretion on the high-lift device including leading-edge slat, main element, and trailing-edge flap. The design optimization framework proposed in this paper consists of four major parts: air flow, droplet impingement and ice accretion simulations and gradient-free optimization algorithm. Reynolds-averaged Navier-Stokes (RANS) simulation is used to predict the aerodynamic performance and flow field around the multi-element airfoil at the angle of attack 8°. Droplet impingement and ice accretion simulations are conducted using the multi-physics computational analysis tool. The objective function is to minimize the total mass of ice accretion and the design variables are the deflection angle, gap, and overhang of the flap and slat. Kriging surrogate model is used to construct the response surface, providing rapid approximations of time-consuming function evaluation, and genetic algorithm is employed to find the optimal solution. As a result of optimization, the total mass of ice accretion on the optimized multielement airfoil is reduced by about 8% compared to the baseline configuration.

A Study on the Overall Economic Risks of a Hypothetical Severe Accident in Nuclear Power Plant Using the Delphi Method (델파이 기법을 이용한 원전사고의 종합적인 경제적 리스크 평가)

  • Jang, Han-Ki;Kim, Joo-Yeon;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.4
    • /
    • pp.127-134
    • /
    • 2008
  • Potential economic impact of a hypothetical severe accident at a nuclear power plant(Uljin units 3/4) was estimated by applying the Delphi method, which is based on the expert judgements and opinions, in the process of quantifying uncertain factors. For the purpose of this study, it is assumed that the radioactive plume directs the inland direction. Since the economic risk can be divided into direct costs and indirect effects and more uncertainties are involved in the latter, the direct costs were estimated first and the indirect effects were then estimated by applying a weighting factor to the direct cost. The Delphi method however subjects to risk of distortion or discrimination of variables because of the human behavior pattern. A mathematical approach based on the Bayesian inferences was employed for data processing to improve the Delphi results. For this task, a model for data processing was developed. One-dimensional Monte Carlo Analysis was applied to get a distribution of values of the weighting factor. The mean and median values of the weighting factor for the indirect effects appeared to be 2.59 and 2.08, respectively. These values are higher than the value suggested by OECD/NEA, 1.25. Some factors such as small territory and public attitude sensitive to radiation could affect the judgement of panel. Then the parameters of the model for estimating the direct costs were classified as U- and V-types, and two-dimensional Monte Carlo analysis was applied to quantify the overall economic risk. The resulting median of the overall economic risk was about 3.9% of the gross domestic products(GDP) of Korea in 2006. When the cost of electricity loss, the highest direct cost, was not taken into account, the overall economic risk was reduced to 2.2% of GDP. This assessment can be used as a reference for justifying the radiological emergency planning and preparedness.

A Study on Prediction of Asian Dusts Using the WRF-Chem Model in 2010 in the Korean Peninsula (WRF-Chem 모델을 이용한 2010년 한반도의 황사 예측에 관한 연구)

  • Jung, Ok Jin;Moon, Yun Seob
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.90-108
    • /
    • 2015
  • The WRF-Chem model was applied to simulate the Asian dust event affecting the Korean Peninsula from 11 to 13 November 2010. GOCART dust emission schemes, RADM2 chemical mechanism, and MADE/SORGAM aerosol scheme were adopted within the WRF-Chem model to predict dust aerosol concentrations. The results in the model simulations were identified by comparing with the weather maps, satellite images, monitoring data of $PM_{10}$ concentration, and LIDAR images. The model results showed a good agreement with the long-range transport from the dust source area such as Northeastern China and Mongolia to the Korean Peninsula. Comparison of the time series of $PM_{10}$ concentration measured at Backnungdo showed that the correlation coefficient was 0.736, and the root mean square error was $192.73{\mu}g/m^3$. The spatial distribution of $PM_{10}$ concentration using the WRF-Chem model was similar to that of the $PM_{2.5}$ which were about a half of $PM_{10}$. Also, they were much alike in those of the UM-ADAM model simulated by the Korean Meteorological Administration. Meanwhile, the spatial distributions of $PM_{10}$ concentrations during the Asian dust events had relevance to those of both the wind speed of u component ($ms^{-1}$) and the PBL height (m). We performed a regressive analysis between $PM_{10}$ concentrations and two meteorological variables (u component and PBL) in the strong dust event in autumn (CASE 1, on 11 to 23 March 2010) and the weak dust event in spring (CASE 2, on 19 to 20 March 2011), respectively.

GMI Microwave Sea Surface Temperature Validation and Environmental Factors in the Seas around Korean Peninsula (한반도 주변해 GMI 마이크로파 해수면온도 검증과 환경적 요인)

  • Kim, Hee-Young;Park, Kyung-Ae;Kwak, Byeong-Dae;Joo, Hui-Tae;Lee, Joon-Soo
    • Journal of the Korean earth science society
    • /
    • v.43 no.5
    • /
    • pp.604-617
    • /
    • 2022
  • Sea surface temperature (SST) is a key variable that can be used to understand ocean-atmosphere phenomena and predict climate change. Satellite microwave remote sensing enables the measurement of SST despite the presence of clouds and precipitation in the sensor path. Therefore, considering the high utilization of microwave SST, it is necessary to continuously verify its accuracy and analyze its error characteristics. In this study, the validation of the microwave global precision measurement (GPM)/GPM microwave imager (GMI) SST around the Northwest Pacific and Korean Peninsula was conducted using surface drifter temperature data for approximately eight years from March 2014 to December 2021. The GMI SST showed a bias of 0.09K and an average root mean square error of 0.97K compared to the actual SST, which was slightly higher than that observed in previous studies. In addition, the error characteristics of the GMI SST were related to environmental factors, such as latitude, distance from the coast, sea wind, and water vapor volume. Errors tended to increase in areas close to coastal areas within 300 km of land and in high-latitude areas. In addition, relatively high errors were found in the range of weak wind speeds (<6 m s-1) during the day and strong wind speeds (>10 m s-1) at night. Atmospheric water vapor contributed to high SST differences in very low ranges of <30 mm and in very high ranges of >60 mm. These errors are consistent with those observed in previous studies, in which GMI data were less accurate at low SST and were estimated to be due to differences in land and ocean radiation, wind-induced changes in sea surface roughness, and absorption of water vapor into the microwave atmosphere. These results suggest that the characteristics of the GMI SST differences should be clarified for more extensive use of microwave satellite SST calculations in the seas around the Korean Peninsula, including a part of the Northwest Pacific.

Introduction and Evaluation of the Production Method for Chlorophyll-a Using Merging of GOCI-II and Polar Orbit Satellite Data (GOCI-II 및 극궤도 위성 자료를 병합한 Chlorophyll-a 산출물 생산방법 소개 및 활용 가능성 평가)

  • Hye-Kyeong Shin;Jae Yeop Kwon;Pyeong Joong Kim;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1255-1272
    • /
    • 2023
  • Satellite-based chlorophyll-a concentration, produced as a long-term time series, is crucial for global climate change research. The production of data without gaps through the merging of time-synthesized or multi-satellite data is essential. However, studies related to satellite-based chlorophyll-a concentration in the waters around the Korean Peninsula have mainly focused on evaluating seasonal characteristics or proposing algorithms suitable for research areas using a single ocean color sensor. In this study, a merging dataset of remote sensing reflectance from the geostationary sensor GOCI-II and polar-orbiting sensors (MODIS, VIIRS, OLCI) was utilized to achieve high spatial coverage of chlorophyll-a concentration in the waters around the Korean Peninsula. The spatial coverage in the results of this study increased by approximately 30% compared to polar-orbiting sensor data, effectively compensating for gaps caused by clouds. Additionally, we aimed to quantitatively assess accuracy through comparison with global chlorophyll-a composite data provided by Ocean Colour Climate Change Initiative (OC-CCI) and GlobColour, along with in-situ observation data. However, due to the limited number of in-situ observation data, we could not provide statistically significant results. Nevertheless, we observed a tendency for underestimation compared to global data. Furthermore, for the evaluation of practical applications in response to marine disasters such as red tides, we qualitatively compared our results with a case of a red tide in the East Sea in 2013. The results showed similarities to OC-CCI rather than standalone geostationary sensor results. Through this study, we plan to use the generated data for future research in artificial intelligence models for prediction and anomaly utilization. It is anticipated that the results will be beneficial for monitoring chlorophyll-a events in the coastal waters around Korea.

Review on the impact of Arctic Amplification on winter cold surges over east Asia (북극 온난화 증폭이 겨울철 동아시아 한파 발생에 미치는 영향 고찰)

  • Seong-Joong Kim;Jeong-Hun Kim;Sang-Yoon Jun;Maeng-Ki Kim;Solji Lee
    • The Korean Journal of Quaternary Research
    • /
    • v.33 no.1_2
    • /
    • pp.1-23
    • /
    • 2021
  • In response to the increase in atmospheric carbon dioxide and greenhouse gases, the global mean temperature is rising rapidly. In particular, the warming of the Arctic is two to three times faster than the rest. Associated with the rapid Arctic warming, the sea ice shows decreasing trends in all seasons. The faster Arctic warming is due to ice-albedo feedback by the presence of snow and ice in polar regions, which have higher reflectivity than the ocean, the bare land, or vegetation, higher long-wave heat loss to space than lower latitudes by lower surface temperature in the Arctic than lower latitudes, different stability of atmosphere between the Arctic and lower latitudes, where low stability leads to larger heat losses to atmosphere from surface by larger latent heat fluxes than the Arctic, where high stability, especially in winter, prohibits losing heat to atmosphere, increase in clouds and water vapor in the Arctic atmosphere that subsequently act as green house gases, and finally due to the increase in sensible heat fluxes from low latitudes to the Arctic via lower troposphere. In contrast to the rapid Arctic warming, in midlatitudes, especially in eastern Asia and eastern North America, cold air outbreaks occur more frequently and last longer in recent decades. Two pathways have been suggested to link the Arctic warming to cold air outbreaks over midlatitudes. The first is through troposphere in synoptic-scales by enhancing the Siberian high via a development of Rossby wave trains initiated from the Arctic, especially the Barents-Kara Seas. The second is via stratosphere by activating planetary waves to stratosphere and beyond, that leads to warming in the Arctic stratosphere and increase in geopotential height that subsequently weakens the polar vortex and results in cold air outbreaks in midlatitudes for several months. There exists lags between the Arctic warming and cold events in midlatitudes. Thus, understanding chain reactions from the Arctic warming to midlatitude cooling could help improve a predictability of seasonal winter weather in midlatitudes. This study reviews the results on the Arctic warming and its connection to midlatitudes and examines the trends in surface temperature and the Arctic sea ice.

A Study on the Observation of Soil Moisture Conditions and its Applied Possibility in Agriculture Using Land Surface Temperature and NDVI from Landsat-8 OLI/TIRS Satellite Image (Landsat-8 OLI/TIRS 위성영상의 지표온도와 식생지수를 이용한 토양의 수분 상태 관측 및 농업분야에의 응용 가능성 연구)

  • Chae, Sung-Ho;Park, Sung-Hwan;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.931-946
    • /
    • 2017
  • The purpose of this study is to observe and analyze soil moisture conditions with high resolution and to evaluate its application feasibility to agriculture. For this purpose, we used three Landsat-8 OLI (Operational Land Imager)/TIRS (Thermal Infrared Sensor) optical and thermal infrared satellite images taken from May to June 2015, 2016, and 2017, including the rural areas of Jeollabuk-do, where 46% of agricultural areas are located. The soil moisture conditions at each date in the study area can be effectively obtained through the SPI (Standardized Precipitation Index)3 drought index, and each image has near normal, moderately wet, and moderately dry soil moisture conditions. The temperature vegetation dryness index (TVDI) was calculated to observe the soil moisture status from the Landsat-8 OLI/TIRS images with different soil moisture conditions and to compare and analyze the soil moisture conditions obtained from the SPI3 drought index. TVDI is estimated from the relationship between LST (Land Surface Temperature) and NDVI (Normalized Difference Vegetation Index) calculated from Landsat-8 OLI/TIRS satellite images. The maximum/minimum values of LST according to NDVI are extracted from the distribution of pixels in the feature space of LST-NDVI, and the Dry/Wet edges of LST according to NDVI can be determined by linear regression analysis. The TVDI value is obtained by calculating the ratio of the LST value between the two edges. We classified the relative soil moisture conditions from the TVDI values into five stages: very wet, wet, normal, dry, and very dry and compared to the soil moisture conditions obtained from SPI3. Due to the rice-planing season from May to June, 62% of the whole images were classified as wet and very wet due to paddy field areas which are the largest proportions in the image. Also, the pixels classified as normal were analyzed because of the influence of the field area in the image. The TVDI classification results for the whole image roughly corresponded to the SPI3 soil moisture condition, but they did not correspond to the subdivision results which are very dry, wet, and very wet. In addition, after extracting and classifying agricultural areas of paddy field and field, the paddy field area did not correspond to the SPI3 drought index in the very dry, normal and very wet classification results, and the field area did not correspond to the SPI3 drought index in the normal classification. This is considered to be a problem in Dry/Wet edge estimation due to outlier such as extremely dry bare soil and very wet paddy field area, water, cloud and mountain topography effects (shadow). However, in the agricultural area, especially the field area, in May to June, it was possible to effectively observe the soil moisture conditions as a subdivision. It is expected that the application of this method will be possible by observing the temporal and spatial changes of the soil moisture status in the agricultural area using the optical satellite with high spatial resolution and forecasting the agricultural production.