• Title/Summary/Keyword: 구동엔진 기반

Search Result 50, Processing Time 0.023 seconds

Design of Message Passing Engine Based on Processing Node Status for MPI Collective Communication (MPI 집합통신을 위한 프로세싱 노드 상태 기반의 메시지 전달 엔진 설계)

  • Chung, Won-Young;Lee, Yong-Surk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8B
    • /
    • pp.668-676
    • /
    • 2012
  • In this paper, on the assumption that MPI collective communication function is converted into a group of point-to-point communication functions in the transaction level, an algorithm that optimizes broadcast, scatter and gather function among MPI collective communication is proposed. The MPI hardware engine that operates the proposed algorithm was designed, and it was named the OCC-MPE (Optimized Collective Communication Message Passing Engine). The OCC-MPE operates point-to-point communication by using the standard send mode. The transmission order is arranged according to the algorithm that proposes the most frequently used broadcast, scatter and gather functions among the collective communications, so the whole communication time is reduced. To measure the performance of the proposed algorithm, the OCC-MPE with the Bus Functional Model (BFM) based on SystemC was designed. After evaluating the performance through the BFM based on SystemC, the proposed OCC-MPE is designed by using VerilogHDL. As a result of synthesizing with the TSMC $0.18{\mu}m$, the gate count of each OCC-MPE is approximately 1978.95 with four processing nodes. That occupies approximately 4.15% in the whole system, which means it takes up a relatively small amount. Improved performance is expected with relatively small amounts of area increase if the OCC-MPE operated by the proposed algorithm is added to the MPSoC (Multi-Processor System on a Chip).

Characteristics of the Carbon Capture and Utilization System in Methanol Fuel Propulsion Ships Based on the Hydrogen Fuel Cell Hybrid System (수소 연료전지 하이브리드 시스템 기반 메탄올 연료추진 선박에서 CCU 적용에 따른 시스템 특성 분석)

  • YoonHo Lee;JunHo Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.2
    • /
    • pp.239-251
    • /
    • 2024
  • In this study, a hydrogen fuel cell process based on methanol was developed to reduce greenhouse gas emissions. In Case1, the methanol fuel engine system was designed to investigate the emission of exhaust gas when methanol was supplied as fuel instead of gasoline to the engine. In Case2, a hydrogen fuel cell system was designed by adding a methanol reforming system to Case1. This hybrid system produced gray hydrogen and combined the output of the engine and fuel cell to drive the ship. However, gray hydrogen emits carbon in the process of producing hydrogen. To address this problem, a carbon capture and utilization (CCU) system was added to Case3. The CO2 of the flue gas discharged from Case2 was synthesized with gray hydrogen to produce blue methanol. The results of the case studies revealed that the optimal operating conditions were 220 ℃, 500 kPa, SCR = 1.0, and flow ratio = 0.7. The system of Case3 reduced carbon emissions by 42% compared with that Case1. Thus, the hybrid system of Case3 could considerably reduce the ship's CO2 emissions.

LAPG-2: A Cost-Efficient Design Verification Platform with Virtual Logic Analyzer and Pattern Generator (LAPG-2: 가상 논리 분석기 및 패턴 생성기를 갖는 저비용 설계 검증 플랫폼)

  • Hwang, Soo-Yun;Kang, Dong-Soo;Jhang, Kyoung-Son;Yi, Kang
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.5
    • /
    • pp.231-236
    • /
    • 2008
  • This paper proposes a cost-efficient and flexible FPGA-based logic circuit emulation platform. By improving the performance and adding more features, this new platform is an enhanced version of our LAPG. It consists of an FPGA-based hardware engine and software element to drive the emulation and monitor the results. It also provides an interactive verification environment which uses an efficient communication protocol through a bi-directional serial link between the host and the FPGA board. The experimental results show that this new approach saves $55%{\sim}99%$ of communication overhead compared with other methods. According to the test results, the new LAPG is more area efficient in complex circuits with many I/O ports.

Investigation on Diesel Injection Characteristics of Natural Gas-Diesel Dual Fuel Engine for Stable Combustion and Efficiency Improvement Under 50% Load Condition (천연가스-디젤 혼소 엔진의 50% 부하 조건에서 제동효율 및 연소안정성 개선을 위한 디젤 분무 특성 평가)

  • Oh, Sechul;Oh, Junho;Jang, Hyungjun;Lee, Jeongwoo;Lee, Seokhwan;Lee, Sunyoup;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.45-53
    • /
    • 2022
  • In order to improve the emission of diesel engines, natural gas-diesel dual fuel combustion compression ignition engines are in the spotlight. In particular, a reactivity controlled compression ignition (RCCI) combustion strategy is investigated comprehensively due to its possibility to improve both efficiency and emissions. With advanced diesel direct injection timing earlier than TDC, it achieves spontaneous reaction with overall lean mixture from a homogeneous mixture in the entire cylinder area, reducing nitrogen oxides (NOx) and particulate matter (PM) and improving braking heat efficiency at the same time. However, there is a disadvantage in that the amount of incomplete combustion increases in a low load region with a relatively small amount of fuel-air. To solve this, sensitive control according to the diesel injection timing and fuel ratio is required. In this study, experiments were conducted to improve efficiency and exhaust emissions of the natural gas-diesel dual fuel engine at low load, and evaluate combustion stability according to the diesel injection timing at the operation point for power generation. A 6 L-class commercial diesel engine was used for the experiment which was conducted under a 50% load range (~50 kW) at 1,800 rpm. Two injectors with different spray patterns were applied to the experiment, and the fraction of natural gas and diesel injection timing were selected as main parameters. Based on the experimental results, it was confirmed that the brake thermal efficiency increased by up to 1.3%p in the modified injector with the narrow-angle injection added. In addition, the spray pattern of the modified injector was suitable for premixed combustion, increasing operable range in consideration of combustion instability, torque reduction, and emissions level under Tier-V level (0.4 g/kWh for NOx).

The Design of Object-of-Interest Extraction System Utilizing Metadata Filtering from Moving Object (이동객체의 메타데이터 필터링을 이용한 관심객체 추출 시스템 설계)

  • Kim, Taewoo;Kim, Hyungheon;Kim, Pyeongkang
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1351-1355
    • /
    • 2016
  • The number of CCTV units is rapidly increasing annually, and the demand for intelligent video-analytics system is also increasing continuously for the effective monitoring of them. The existing analytics engines, however, require considerable computing resources and cannot provide a sufficient detection accuracy. For this paper, a light analytics engine was employed to analyze video and we collected metadata, such as an object's location and size, and the dwell time from the engine. A further data analysis was then performed to filter out the target of interest; as a result, it was possible to verify that a light engine and the heavy data analytics of the metadata from that engine can reject an enormous amount of environmental noise to extract the target of interest effectively. The result of this research is expected to contribute to the development of active intelligent-monitoring systems for the future.

Initial Sizing of General Aviation Aircraft Propelled by Electric Propulsion system (전기로 추진되는 일반 프로펠러 항공기의 초기 사이징)

  • Han, Hye-Sun;Shin, Kyo-Sic;Park, Hong-Ju;Hwang, Ho-Yon;Nam, Taewoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.391-403
    • /
    • 2013
  • Propeller aircraft propelled by an electric propulsion system is gaining a renewed interest because of ever-increasing environmental concern on harmful emissions emitted from conventional jet engines and national energy security. Traditional aircraft sizing methods are not readily applicable to electric propulsion aircraft that utilize a variety of alternative energy sources and power generation systems. This study showcases an electric propulsion aircraft sizing exercise based on a generalized, power based sizing method. A general aviation aircraft is propelled by an electric propulsion system that comprises of a propeller, a high temperature super conducting motor, a Proton Exchange Membrance(PEM) fuel cell system fuelled with hydrogen, and power conditioning equipment. In order to assess the impact of technology progression, aircraft sizing was conducted for two different sets of technology assumptions for electric components, and the results were compared with conventional baseline aircraft.

Measurement System for Vehicle Electric Power using LabVIEW (LabVIEW를 이용한 자동차 발전기 전압 계측시스템)

  • So, Soon-Sun;Yang, Su-Jin;Lee, Seong-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.5899-5905
    • /
    • 2014
  • Faults in electric power system can be a critical problem for vehicles. The system durability is determined mainly by the durability of their components and operating conditions. Monitoring the conditions of the electric power system may be necessary because it is very difficult to predict precisely when it will fail. Therefore, the aim of this study was to develop a diagnosis system for an electric power system of a vehicle. The alternator voltage, excitation voltage, lamp voltage, battery voltage, and engine rpm from a crank angle sensor are monitored continuously and the system fault can be then detected in real time. NI USB- 9201 DAQ and LabVIEW SW have been used to measure the voltages and analyze the data. Compared to conventional measurements for only each component, an integrated and portable measurement method was developed. In addition to the monitoring the electric power system in real time, the saved data from the measurement also provides valuable information to improve the durability of the components.

Development of GIS Application using Web-based CAD (Web기반 CAD를 이용한 지리정보시스템 구현)

  • Kim, Han-Su;Im, Jun-Hong;Kim, Jae-Deuk;Shin, So-Eun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.3
    • /
    • pp.69-76
    • /
    • 2000
  • This study deals with development GIS application using web-based CAD, this application serves to user, designer, manager that more convenient and various functions. Development to this application, collect attribute data from fieldwork and geographic data from cadastral map and aerial survey map and then development to user interface using HTML, JavaScript, ASP, Whip ActiveX control. This application's characters are as follows ; First, system designer designed that anyone who have basic knowledge about web and CAD can develop this application. A system structure simplification by 2-Tier. Geographic information use DWF(drawing web format) file and attribute information use DBMS in consideration of extension. Second, system manager can service independently GIS in Web need not high priced GIS engine, so more economical. Third, internet user get service GIS information and function that search of information, zoom in/out, pan, print etc., if you need more functions, add function without difficultly. Developed application as above, not only save volume but fast of speed as use vector data exclude character and image data. Also, this application can used by means of commercial and travel information service but also various GIS service of public institution and private in web.

  • PDF

Development of a GIS-based Computer Program to Design Countermeasures against Debris Flows (GIS기반 토석류 산사태 대응공법 설계 프로그램 개발)

  • Song, Young-Suk;Chae, Byung-Gon
    • The Journal of Engineering Geology
    • /
    • v.23 no.1
    • /
    • pp.57-65
    • /
    • 2013
  • We developed a computer program (CDFlow v. 1.0) to design countermeasures against debris flows in natural terrain. The program can predict the probability of landslides occurring in natural terrain and can estimate the zone of damage caused by a debris flow. It can also be used to design the location and size of countermeasures against the debris flow. The program is run using the ArcGIS Engine, which is one of the most well-known Geographic Information System (GIS) tools for developers. The quasi-dynamic wetness index and the infinite slope stability equation were applied to predict landslide probability as a type of slope safety factor. The calculated safety factor was compared with the required safety factor, and areas of high probable potential for landslides were then selected and represented on the digital map. The volume of debris flow was estimated using these areas of high probable potential for landslides and soil depth. The accumulated volume of debris flow can be calculated along the flow channel. To assess the accuracy of the program, it was applied to a real landslide site at Deoksan-ri, Inje-gun, Kangwon-Province, where four debris barriers have been installed in the watershed of the site. The results of soil tests and a field survey indicate that the program has great potential for estimating probable landslide areas and the trajectory of debris flows. Calculation of the capacity volume of existing debris barriers revealed that they had insufficient capacity to store the calculated amount of debris flow. Therefore, this program enables a rational estimation of the optimal location and size of debris barriers.

Experimental Study of the Wireless Communication System by Surface Wave Communication through Confined Spaces on Vessels (선박 밀폐 공간 무선통신 구현을 위한 표면파 통신의 선박 활용연구)

  • Kong, Jin-Woo;Song, Suk-Gun;Kim, Hak-Sun;Kim, Bu-Young;Shim, Woo-Seong
    • Journal of Navigation and Port Research
    • /
    • v.45 no.6
    • /
    • pp.366-371
    • /
    • 2021
  • This study suggests surface wave communication, which uses a metal surface as a medium, to provide wireless communication in the extreme environment due to surrounding metal materials on vessels. The test was conducted on a G/T 265 tons tug boat to confirm the possibility of surface wave communication between a bridge and each designated space in the ship. As a result, the transmission speed was 13Mbps on average. In a test case of the bridge via the engine room, the transmission speed was 4.3Mbps on engine running and 1.2Mbps on sailing. It overcame this by partially changing the equipment installation location. Surface wave communication in bow storage, a fully enclosed space, had 8Mbps better transmission speed than wireless communication; this confirmed the superiority of surface wave communication in confined spaces on a vessel. Additional surface wave generators were designed and applied to resolve the paint issue. It is expected to use surface wave communication to implement the new wireless solution for Maritime-IoT system on vessels.