• Title/Summary/Keyword: 구동기 동역학

Search Result 47, Processing Time 0.03 seconds

Dynamic Models of Blade Pitch Control System Driven by Electro-Mechanical Actuator (전기-기계식 구동기를 이용한 블레이드 피치 조종 시스템의 동역학 모델)

  • Jin, Jaehyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.2
    • /
    • pp.111-118
    • /
    • 2022
  • An electro-mechanical actuator (EMA) is an actuator that combines an electric motor with a mechanical power transmission elements, and it is suitable for urban air mobility (UAM) in terms of design freedom and maintenance. In this paper, the author presents the research results of the EMA that controls the rotor blade pitch angle of UAM. The actuator is based on an inverted roller screw and controls the blade pitch angle through a two-bar linkage. The dynamic equations for the actuator alone and the blade pitching motion with actuator were derived. For the latter, the equivalent moment of inertia is variable depending on the link angle due to the two-bar linkage. The variations of the equivalent moments of inertia are analyzed and compared in terms of the nut motion and the blade pitch motion. For an example model, the variation of the equivalent moment of inertia of the former is smaller than the latter, so it is judged that the dynamic equations derived from the point of view of the nut motion is suitable for the controller design.

Evaluation of Structural Safety of Linear Actuator for Flap Control of Aircraft (항공기 플랩 제어를 위한 선형 구동기의 구조 안전성 평가)

  • Kim, Dong-Hyeop;Kim, Sang-Woo
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.4
    • /
    • pp.66-73
    • /
    • 2019
  • The objective of this study was to evaluate the structural safety of the basic design for the linear actuator for the flap control of aircrafts. The kinetic behavior of the linear actuator was determined using the multi-body dynamics (MBD) analysis, and the contact force was calculated to be used as input data for the structural analysis based on the finite element analysis. In the structural analysis, the thermal and static behaviors of the linear actuator satisfying the designed velocity were examined, and the structural safety of the linear actuator evaluated. Moreover, the dynamic behaviors of the key components of the linear actuator were investigated by the modal analysis. The actuation rod linearly moved with about 5 mm/s when the motor operated at 225 rpm and the maximum contact force of 32.83 N occurred between two driving gears. Meanwhile, the structural analysis revealed that the maximum thermal and static stresses were 1.57% and 78% of the yield strength of steel, respectively, and they were in a safe range of the structure. In addition, the linear actuator for the basic design is stable to the resonance by avoiding the natural frequencies of the components.

Structural Safety Evaluation of Basic Design Model of Linear Actuator for Blade Pitch Control of eVTOL Aircraft (eVTOL 항공기 블레이드 피치 제어용 선형 구동기 기본설계 모델의 구조 안전성 평가)

  • Young-Cheol, Kim;Dong-Hyeop, Kim;Sang-Woo, Kim;Jeong-Hyun, Kang;Dohyung, Kim
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.106-113
    • /
    • 2022
  • The structural safety of the basic design model of the linear actuator for the individual blade pitch control of eVTOL personal aircraft was investigated. Stress analysis based on the finite element method was conducted, and the margin of safety was calculated to examine the structural safety under stall load conditions. Additionally, fatigue analysis was conducted to evaluate the fatigue life of the linear actuators under operating conditions. The load history with the blade pitch angle was calculated using multi-body dynamics analysis, and the static load analysis was used to obtain the stress distribution for the rated load. As a result, it was confirmed that the safety margins exceeded zero, and the fatigue lives of all linear actuator components exceeded 107 cycles, indicating a safe structural range.

Design of Control Method for ON/OFF Type Actuation System Considering Actuation Limit (구동한계를 고려한 ON/OFF 형식 구동시스템의 구동위치 제어기법 설계)

  • Park, Jungwoo;Park, Iksoo;Park, Dongchang;Hwang, Kiyoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.2
    • /
    • pp.17-28
    • /
    • 2015
  • In this paper, it is accomplished to design a control method for such an actuation system of simplified ON/OFF mechanism with actuation command limit. First of all, based on experimental data, the modeling works for nonlinear/linear actuation dynamics are performed, which are govern by PWM command as a control input. Using the linearized model, a classical PI control method is designed to satisfy the aimed control performance requirements, and a control algorithm is proposed to realize the required control performance in the effective control region through resolving the issue for the PWM command limit which reduces the control performance. Finally, through control simulations, the design method is verified and the corresponding control performance improvement is evaluated.

인공 위성 구동기 모듈의 고장 검출

  • Jin, Jae-Hyeon
    • ICROS
    • /
    • v.17 no.4
    • /
    • pp.42-45
    • /
    • 2011
  • 위성 구동기 고장을 검출하는 문제를 살펴보기 위하여, 최근에 발표된 논문을 분석하였다. 구동기에 발생하는 고장은 그 영향이, 위성의 동역학을 거쳐서 센서의 출력으로 나타나기 때문에, 고장 검출은 기본적으로 상태추정이 수반되어야 한다. 다양한 상태추정기법이 적용될 수 있는데, 가장 많이 사용되는 기법은 Kalman 필터 및 유사 필터들이다. 위성의 고장에 적시에 대응한다면 피해를 최소화할 수 있기 때문에, 자율성 높은 탑재형(on-board)의 고장 진단 및 대응 시스템이 주요 연구목표가 된다.

Dynamic Analysis of Driving Mechanism for Displacement Controlled Automatic Drug Injector (변위 제어형 자동 약물주입기의 구동기구 동역학 해석)

  • Shin, Young Kyu;Han, Nam Gyu;Tak, Tae Oh
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.303-311
    • /
    • 2013
  • This research deals with the analysis and design of a driving mechanism for an automatic pneumatic drug injector, which can precisely control the injection volume using a relatively simple friction-driven mechanism, without any complicated control system. Through a dynamic analysis, the effects of the design parameters of the driving mechanism associated with the geometry, spring stiffness, and fiction are analyzed, and the results are reflected in a proto-type drug injector design, which is under development for mass production. A test is performed to assess the durability of the mechanism for up to one million operations, and comparison of its displacement after one million operations, verifies the mechanism's durability.

Actuator Fault Detection and Isolation Method for a Hexacopter (헥사콥터의 구동기 고장 검출 및 분리 방법)

  • Park, Min-Kee
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.266-272
    • /
    • 2019
  • Multicopters have become more popular since they are advantageous in their ability to take off and land vertically. In order to guarantee the normal operations of such multicopters, the problem of fault detection and isolation is very important. In this paper, a new method for detecting and isolating an actuator fault of a hexacopter is proposed based on the analytical approach. The residual is newly defined using the angular velocities of actuators estimated by the mathematical model and an actuator fault is detected comparing the residuals to a threshold. And a fault is isolated combining a dynamic model and generated residuals when a fault is detected. The proposed method is a simple, but effective technique because it is based on mathematical model. The results of the computer simulation are also given to demonstrate the validity of the proposed algorithm in case of a single failure.

Dynamic Analysis of Driving Mechanism for ALTS with High-Speed Transfer Characteristics (고속 전환 부하 개폐기 구동부의 동 특성 해석)

  • Chung, Won-Sun;Jung, Hea-JIn;Ahn, Kil-Young;Oh, Il-Sung;Hong, Doo-Young
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.73-76
    • /
    • 2004
  • 자동 부하 전환 개폐기는 일반적으로 주 전원의 전압 상태를 감시하여 주 전원의 정전이나, 저 전압 이 감지 될 때 주 전원을 개방시키고, 예비 전원으로 신속하게 전환 시킬 수 있는 구동 메커니즘이 필요하며, 주 전원이 정상 상태로 복구되면 다시 예비 전원에서 주 전원으로의 신속한 전환이 요구 되어진다. 본 논문에서 연구되는 자동 부하 전환 개폐기의 구동부는 1개의 구동력으로 2개 선로의 스위치를 동시에 조작하게 할 수 있는 링크 구조와 동작 원리를 간지고 있으며, 이 동작을 안정적이고 신뢰도 높게 조작하기 위해서 개폐기 구동부의 동특성을 구현할 수 있는 동적 모델로 검증하여 재작하였다. 보다 정확한 모델 수립을 위하여 기구 동작 시에 발생하는 부품들 사이의 충돌, 마찰, 유연성 등의 많은 동적특성들을 정밀하게 모사 할 수 있는 유연 다물체 동역학을 적용하였으며, 검증하였다.

  • PDF

Control System Modeling and Optimal Bending Filter Design for KSR-III First Stage (KSR-III 1단 자세제어 시스템 모델링 및 벤딩필터 최적 설계)

  • Ahn, Jae-Myung;Roh, Woong-Rae;Cho, Hyun-Chul;Park, Jeong-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.113-122
    • /
    • 2002
  • Control system modeling and optimal bending filter design for KSR-III (Korea Sounding Rocket III) are performed. Rigid rocket dynamics, aerodynamics, sloshing, structural bending, actuator dynamics, sensor dynamics and on-board computer characteristics are considered for control system modeling. Compensation for time-varying control system parameters is conducted by gain-scheduling. A filter to stabilize bending mode is designed using parameter optimization technique. Resultant attitude control system can satisfy required frequency domain stability margin.

Development of VDS for Geosynchronous Satellite and Verification using PILS & HILS (정지궤도위성 실시간 동역학 시뮬레이터 개발 및 연동시험을 통한 검증)

  • Park, Yeong-Ung;Gu, Ja-Chun;Choe, Jae-Dong;Gu, Cheol-Hoe;Park, Bong-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.103-109
    • /
    • 2006
  • In this paper, VDS(Vehicle Dynamics Simulator) and ACS(Attitude Control Simulator) are developed and are verified using PILS(Process In-the Loop Simulation) between VDS and ACS. VDS is including the AOCS(Attitude & Orbit Control Subsystem) hardware modeling of geosynchronous satellite and consists of modulation concept. ACS performs the attitude determination using sensor data and generates the attitude control commands. In order to transfer the data between VDS and PCDU(Power Control & Distribution Unit), data acquisition boards were mounted. VDS performance is verified using HILS(Hardware In-the Loop Simulation) between VDS and PCDU.