• 제목/요약/키워드: 교통 표지 검출

검색결과 27건 처리시간 0.04초

빛에 강인한 교통 표지판 검출 및 인식 (Light Invariant Traffic Sign Detection and Recognition)

  • 길태호;조남익
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2014년도 하계학술대회
    • /
    • pp.139-141
    • /
    • 2014
  • 지능형 차량 시스템에 있어서 교통 표지판 검출/인식은 매우 중요한 요소들 중의 하나이다. 따라서 주행 중인 차량에서 카메라로부터 취득한 영상을 이용하여 교통 표지판을 인식하는 여러 가지 영상인식 알고리즘들이 개발되고 있다. 하지만 이러한 알고리즘은 표지판의 색상 값이 날씨와 시간에 따른 조도와 컬러의 변화에 따라 성능이 크게 변한다는 점에서 어려움을 겪고 있다. 따라서 본 논문은 환경 변화에 강인한 교통 표지판 검출 및 인식 알고리즘을 제안한다. 구체적으로, 표지판 검출을 위하여 제안하는 알고리즘에서는 색상과 형태 정보를 이용하여 교통 표지판 후보군을 찾는다. 여러 색상 임계값에 대하여 영상 피라미드 형태를 만들고, 모든 피라미드 영상들에 대해서 인식 알고리즘을 수행함으로써 실외 빛에 변화에 강인하게 한다. 교통 표지판 후보군을 찾은 후, 후보군들을 Linear SVM을 통해 학습함으로써 교통 표지판인지 아닌지 분류해낸다. 실험 결과는 제안하는 알고리즘이 정확하게 교통 표지판을 인식하고, 동시에 실외 빛의 변화에 상관없이 강인하게 표지판을 인식함을 보여준다.

  • PDF

테스트베드 환경에서 교통 표지판 검출의 성능 분석: 예비 연구 (Performance Analysis of Traffic Sign Detection in the Testbed Environment : A Preliminary Study)

  • 시종욱;김성영
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.7-8
    • /
    • 2023
  • 자율주행 자동차에 관한 연구에서 상황을 인지하기 위한 교통 표지판을 다양한 환경에서 인식하도록 하는 과정은 필수적인 요소이다. 이러한 교통 표지판은 객체 검출 방법을 통해 인지할 수 있지만, 환경에 따라 성능 차이가 크다. 본 논문에서는 Yolov4 모델을 기반으로 공개된 데이터 세트를 이용해 학습하고, 테스트 배드 환경에서 교통 표지판을 검출한다. 테스트 배드에서 조건, 거리, 강수량에 따른 다양한 환경에 대한 교통 표지판 검출의 성능을 비교 및 분석한 결과를 보인다.

  • PDF

HSI 고유칼라 모델과 불변 모멘트를 이용한 교통 표지판 검출 방법 (Traffic Sign Detection Using The HSI Eigen-color model and Invariant Moments)

  • 김종배;박정호
    • 전자공학회논문지CI
    • /
    • 제47권1호
    • /
    • pp.41-51
    • /
    • 2010
  • 차량 운전자 지원을 위한 연구에서 도로상에 위치한 교통 표지판은 운전자에게 아주 중요한 정보임에 틀림없다. 따라서 주행중인 차량에서 획득한 영상으로부터 실시간으로 교통 표지판을 검출하여 운전자에게 그 정보를 제공한다면 안전운전에 큰 도움이 될 것이다. 하지만 주행중인 차량으로부터 획득한 영상에는 차량과 노면의 진동에 의해 획득된 영상에 흐림 현상이 발생하고 또한 노이즈들이 포함되어 있어 정확한 표지판 검출이 어려운 문제점이 있다. 게다가 영상획득을 위한 촬영 각도나 날씨 등에 의해 교통 표지판의 고유한 색상과 모양이 서로 다르게 표현되는 문제점이 발생한다. 이를 해결하기 위해 본 논문에서는 도로 환경과 같은 다양한 조도 변화가 포함된 교통 표지판 영상들로부터 고유색상 정보를 분석하고 HSI 고유칼라 모델을 생성하고 이를 이용하여 교통 표지판의 후보 영역을 검출한다. 그리고 모양정보 분석을 위해 교통 표지판의 고유한 형태학적 정보를 표현할 수 있는 불변 모멘트 특징정보를 추출하여 SVM을 통해 최종 교통 표지판 영역을 검출하는 방법을 제안한다. 제안한 방법을 도로에서 획득한 영상에서 실험한 결과, 교통 표지판 검출율은 91%, 그리고 프레임당 처리 시간은 0.38초이며, 제안한 방법은 실시간 지능형 교통 안내 시스템에 유용하게 적용될 수 있다.

가변 임계값 색상 필터를 사용한 교통 표지판 영역 추출 (Traffic Sign Area Detection by using Color Filtering with Variable Threshold)

  • 장준;정경훈
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 하계학술대회
    • /
    • pp.99-102
    • /
    • 2016
  • 교통표지판 검출 및 인식은 차량의 자율주행 및 ADAS (Advanced Driver Assistance System)의 필수적인 요소이다. 교통표지판의 각종 표식을 인식하기 위해서는 먼저 교통표지판 영역을 검출해야 하며, 이 작업은 통상적으로 교통표지판에 포함된 빨간색을 추출하는 컬러 필터링을 통해 이루어진다. 하지만 차량 영상에 나타나는 색상 성분은 태양광의 방향이나 날씨 등에 상당한 영향을 받으며 이러한 조도 환경은 차량이 주행하게 되면 시간적으로도 수시로 변화한다. 더군다나 사용하는 카메라의 내부적인 특성에 따라서도 색상 성분의 분포가 달라지기 때문에 컬러 필터링을 위한 임계값은 고정값을 사용하기 보다는 적응적으로 변화시킬 필요가 있다. 본 논문에서는 다양한 조도 환경과 다양한 카메라 종류에 따라서 영상 내 교통표지판의 빨간색 성분의 분포를 분석하고 이를 바탕으로 임계값을 가변적으로 설정하는 방법을 제안한다. 그리고 모의실험을 통해 제안 방법을 적용하면 고정된 임계값을 사용한 방법보다 조도변화에 강인하게 교통표지판 영역을 검출할 수 있음을 확인하였다.

  • PDF

영상인식과 사진측량 기술을 이용한 교통표지 자동측정 방법 (Automatic Measurement Method of Traffic Signs Using Image Recognition and Photogrammetry Technology)

  • 장상규;김진수
    • 대한공간정보학회지
    • /
    • 제21권3호
    • /
    • pp.19-25
    • /
    • 2013
  • 최근 도시의 도로시설물 관리에 대한 중요성이 증대됨에 따라 보다 정확한 시설물의 데이터베이스 정보가 요구되고 있다. 본 연구에서는 효율적인 도로시설물 DB 구축에 필요한 교통표지를 자동으로 검출하는 방법을 제안하였다. 검출 방법은 영상에서 특정 교통표지를 인식하여 자동으로 검출한 후 시설물의 중심위치를 찾는 순서로 진행하였다. 최종적으로 검출된 교통표지의 위치 정확도를 평가하기 위해서, 실제 측량한 좌표값과 연구를 통해 교통표지의 좌표값을 비교하였다. 교통표지 인식과 검출 과정에서는 OPEN CV를 이용한 코딩을 통해 컴퓨터 비젼 기술을 이용하였으며, 검출된 교통표지의 정확한 위치 계산은 사진측량 기술을 이용하였다. 다양한 종류의 도로표지판 중에서 원형 교통표지판(주차금지)과 삼각형 교통표지판(횡단보도)을 선택하여 진행하였다. 제안한 연구를 통해 산출된 좌표값과 실제 측량된 좌표값의 차이는 원형 교통표지판이 약 50cm, 삼각형 교통표지판이 약 60cm의 오차값으로 나타났다. 이러한 결과는 만족할 만한 결과는 아니지만 교통표지의 위치를 찾기에는 무리가 없을 것으로 판단된다.

FCS(Front Camera System)을 이용한 교통 표지판 검출 기법 (A Method of Road Furniture Detection using FCS(Front Camera System))

  • 성택영;문광석;이석환;문영득;권기룡
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2012년도 춘계학술발표대회논문집
    • /
    • pp.28-29
    • /
    • 2012
  • IT 및 자동차 관련 기술의 융합 기술의 발전에 따라 자동차의 안전 및 운전편의 정보 제공에 대한 관심이 높아지면서 인간의 시각 및 지각의 한계를 보완해 줄 수 있는 보조 도구들에 대한 연구 및 개발이 활발히 이루어지고 있다. 그러나 기존의 컴퓨터 비전 기반 도로 교통 표지판 자동 검출 및 인식 기술들은 센싱 장비들의 가격 또는 조도와 원근감에 따른 교통 표지판의 색상과 모양 왜곡으로 인해 해당 표지판들의 검출을 어렵게 한다. 따라서 본 논문에서는 차량 내 탑재가 가능한 저가의 비전 카메라를 이용하여 교통표지판 칼라 분석 및 원근 보정을 통해 운전자에게 효과적으로 도로표지판 정보를 제공할 수 있는 검출기법을 제안한다. 실험을 통해 도로주행영상 내 도로표지판들을 효과적으로 검출할 수 있음을 확인하였다.

  • PDF

색상정보와 신경회로망을 이용한 교통 표지판 검출 (Traffic Sign Recognition Using Color Information and Neural Networks)

  • 신민철;나상일;이정호;정준호;정동석
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.943-945
    • /
    • 2005
  • 교통 표지판은 안전하고 효율적인 주행을 위해 운전자에게 여러 가지 정보를 제공한다. 따라서 교통 표지판의 자동인식은 자동운전이나 안전운전 시스템 등에 중요하게 사용될 수 있다. 본 논문은 영상에서 나타난 여러 가지 도로시설물 중 교통 표지판을 인식하는 알고리즘을 제안한다. 제안된 알고리즘은 교통 표지판이 가지고 있는 색상, 밝기, 형태 등의 정보를 이용하여 교통 표지판을 자동으로 인식한다. 일반적인 영상처리에서는 RGB 색상 공간의 처리는 간단하지만 날씨나 조명 상태의 변화에 민감하므로 본 논문에서는 색상과 채도에서 컬러 인지력이 높은 HSI 공간을 활용하여 주변 환경의 영향을 줄였다. 또한 고속 인식을 위하여 영상 모멘트 템플릿 정합을 사용하여 신경 회로망을 구성하였다.

  • PDF

수직면과 아다부스트를 사용한 실시간 교통 표지판 검출 (Real-Time Road Sign Detection Using Vertical Plane and Adaboost)

  • 윤창용;장석윤;박민용
    • 전자공학회논문지SC
    • /
    • 제46권5호
    • /
    • pp.29-37
    • /
    • 2009
  • 본 논문은 움직이는 차 안에서 교통 표지판을 실시간으로 검출하는 영상 기반 시스템을 기술한다. 제안된 시스템은 표지판 검출을 실시간으로 수행하기 위하여 아다부스트 알고리즘을 기본 구조로 가지고 있고, 대부분의 교통 표지판이 지표면으로부터 수직으로 세워져 있는 점에 착안하여 수직면 값을 후보군 검출 과정에서 사용하였다. 기존의 아다부스트 알고리즘은 실시간 검출을 위하여 유용하지만, 특징으로써 누적 영상들만을 사용하므로 복잡한 도로 환경에서는 검출율이 저하된다. 본 논문에서는 이러한 단점을 해결하기 위하여 후보군 검출을 위한 특징으로써 수직면 값을 이용함으로써 검출 후보군의 신뢰도를 높이고, 또한 특징 원형의 종류가 추가된 누적 영상들을 사용함으로써 표지판 검출 성능을 향상시킨다. 실험 결과에서는 본 논문에서 제안된 방법이 실제 도로 환경에서 기존의 아다부스트 방법보다 검출율이 향상되었음을 보인다.

교통표지판 검출을 위한 다중 색상 임계값 모델 (Multi-Color Threshold Model For Traffic Sign Detection)

  • 우병대;최영우;변혜란
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 춘계학술발표대회
    • /
    • pp.226-228
    • /
    • 2013
  • 본 논문은 실제 주행 도로영상에서 교통표지판을 검출하기 위하여 다중 색상 임계값 모델을 이용한 색상 분할 방법을 제안한다. 제안하는 방법은 하나의 모델을 이용하는 기존의 색 분할 방법과 달리 다양한 조명 환경에서도 동작할 수 있는 다중 색상 모델을 사용한 방법이다. 모델 생성을 위해 각 조명 모델에 해당하는 학습용 데이터를 이용하여 모델의 임계값 범위를 추정한다. 이 과정에서 임계값의 범위는 상위 0.5%와 하위 0.5%를 제외한 픽셀 값 분포에서의 최대 및 최소값으로 결정한다. 제안한 방법을 이용하여 다양한 조명 상태에서의 교통표지판도 검출이 가능하다.

교통 신호 인식을 위한 경량 잔류층 기반 컨볼루션 신경망 (Lightweight Residual Layer Based Convolutional Neural Networks for Traffic Sign Recognition)

  • ;류재흥
    • 한국전자통신학회논문지
    • /
    • 제17권1호
    • /
    • pp.105-110
    • /
    • 2022
  • 교통 표지 인식은 교통 관련 문제를 해결하는 데 중요한 역할을 한다. 교통 표지 인식 및 분류 시스템은 교통안전, 교통 모니터링, 자율주행 서비스 및 자율주행 차의 핵심 구성 요소이다. 휴대용 장치에 적용할 수 있는 경량 모델은 설계 의제의 필수 측면이다. 우리는 교통 표지 인식 시스템을 위한 잔여 블록이 있는 경량 합성곱 신경망 모델을 제안한다. 제안된 모델은 공개적으로 사용 가능한 벤치마크 데이터에서 매우 경쟁력 있는 결과를 보여준다.