• Title/Summary/Keyword: 교통예측

Search Result 1,329, Processing Time 0.026 seconds

Present Status of Non-Native Amphibians and Reptiles Traded in Korean Online Pet Shop (한국 온라인 펫샵에서 거래되는 외래 양서파충류 현황)

  • Koo, Kyo Soung;Park, Hye Rin;Choi, Jae Hyeok;Sung, Ha Cheol
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.2
    • /
    • pp.106-114
    • /
    • 2020
  • The development of transportation and the expansion of the pet market has become the main causes of the increase in the cross-border migration of non-native species. Moreover, recent sales over the Internet were a factor that has promoted pet trades. While the import of non-native species has been steadily increasing in the Republic of Korea, it is not clear how these imported species are traded and how large the trade is. Considering that most of the non-native species found in the wild are the results of release by humans understanding the present situation of pet trades can identify potential non-native species that can enter the wild. This study surveyed the number of species, frequency, and prices of non-native amphibians and reptiles sold in 25 online pet shops from January 22 to February 10, 2019. The results of the survey showed that a total of 677 species of non-native amphibians and reptiles were sold, and the Squamata group accounted for the largest part of them at 65.4% (443 species). The number of non-native amphibians and reptiles sold in online pet shops in 2019 was 2.1 times larger than the 325 species officially imported in 2015. The non-native amphibians and reptiles sold in most pet shops were Litoria caerulea (21 shops) and Correlophus ciliatus (24 shops). The lowest price for non-native amphibians and reptiles was 3,000 won, and the highest price was 100 million won for Rhacodactylus leachianus of Squamata. Among the non-native amphibians and reptiles sold in online pet shops, 11 species were found in the wild and were sold at relatively low prices. We confirmed that Mauremys reevesii, an endangered species class II and natural monument no. 453, and American bullfrogs (albino), an ecosystem disturbing species, were being sold in online pet shops. Moreover, 21.6% of the 677 non-native amphibians and reptiles sold in online pet shops were species designated as CITES. The results of this study can be the important reference data for understanding the status of non-native amphibians and reptiles that are imported and sold in Korea and evaluating and predicting the potential for them to enter the wild.

An Analysis on the Characteristics of Each Phase's Risk Factors for High-Rise Development Project (초고층 개발사업 추진을 위한 단계별 리스크 요인의 특성 분석)

  • Chun, Young-Jun;Cho, Joo-Hyun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.4
    • /
    • pp.103-115
    • /
    • 2016
  • The 106 buildings of 200 meters' height or greater were completed around the world in 2015 (CTBUH, The Council on Tall Buildings and Urban Habitat). They beat every previous year on record, including the previous record high of 99 completions in 2014. This brings the total number of 200-meter-plus buildings in the world to 1,040, exceeding 1,000 for the first time in history and marking a 392% increase from the year 2000, when only 265 existed. South Korea recorded three completions during 2015 - improving slightly over 2014, in which it had one. This study focused on the fact that high-rise building development project risks have not reduced in Korea in spite of numerous studies and measures. And it attempted to examine whether existing studies and measures have been presented on the basis of the accurate analysis of existing studies and measures and classify and analyze the characteristics of each phase' s risk factors in the hope that its results would be one reference point as to the measure to prevent high-rise building development project risks in the future. A high-rise building development project is the high risk project as compared with the low-rise project. Because a high-rise development project takes long and is very sensitive to the changing environment. Therefore, in order to succeed the project it becomes necessary to effectively manage the risk involved in the process of the high-rise building development project. The result of this study can be used as the guideline to make the risk management system for the high-rise development project.

A Legal Study on Safety Management System (항공안전관리에 관한 법적 고찰)

  • So, Jae-Seon;Lee, Chang-Kyu
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.29 no.1
    • /
    • pp.3-32
    • /
    • 2014
  • Safety Management System is the aviation industry policy for while operating the aircraft, to ensure the safety crew, aircraft and passengers. For operating a safe aircraft, in order to establish the international technical standards, the International Civil Aviation Organization has established the Annex 19 of the Convention on International Civil Aviation. As a result, member country was supposed to be in accordance with the policy of the International Civil Aviation Organization, to accept the international standard of domestic air law. The South Korean government announced that it would promote active safety management strategy in primary aviation policy master plan of 2012. And, by integrating and state safety programmes(ssp) and safety management system(sms) for the safe management of Annex 19 is to enforce the policy on aviation safety standards. State safety programmes(ssp) is a system of activities for the aim of strengthening the safety and integrated management of the activities of government. State safety programmes(ssp) is important on the basis of the data of the risk information. Collecting aviation hazard information is necessary for efficient operation of the state safety programmes(ssp) Korean government must implement the strategy required to comply with aviation methods and standards of the International Civil Aviation Organization. Airlines, must strive to safety features for safety culture construction and improvement of safety management is realized. It is necessary to make regulations on the basis of the aviation practice, for aviation safety regulatory requirements, aviation safety should reflect the opinion of the aviation industry.

Spatial analysis of financial activities in the Korean urban system (한국 금융의 공간적 특색에 관한 연구)

  • Choi, Jae Heon
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.4
    • /
    • pp.321-355
    • /
    • 1993
  • This paper focuses on the geographical pattern of financial activities in the Korean urban system during 1975-1990, based on the assumption that financial activities can reveal control points in Korea's urban economy. In terms of spatial evolution of financial insitutions, different locational characteristics are revealed among different types of financial institutions, implying the role of urban hierarchy. Financial resources are highly concentrated in the capital region, Seoul and Kyonggi Province. Both centralization trends into the large metropolitan cities and relative declines of medium and small cities within the Korean urban system, have been experienced over the study period. Financial activities sustain relatively stable hierarchical structure in the urban hierarchy. Regarding the financial flows, dominant flow zones centered on major metropolitan cities are identified, clearly showing a prominant role of Seoul in financial flows in the entire urban system.

  • PDF

Analysis of Start-up Sustainability Factors Based on ERIS Model: Focusing on the Organization Resilience (ERIS모델 기반 창업지속요인 분석: 조직 리질리언스를 중심으로)

  • Kim, InSook;Yang, Ji Hee
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.16 no.5
    • /
    • pp.15-29
    • /
    • 2021
  • This study is based on ERIS model for start-up performance, and aims to derive the main reason for start-up sustainability centered on organizational resilience. To this end, systematic literature examination and modified Delphi method were used to investigate start-up sustainability factors based on ERIS Model focused on organizational resilience. The results showed that ERIS model-based entrepreneurial continuity factors were divided into four categories: entrepreneur, resource, industrial environment, strategy, subdivision 8 and detailed factors 54. In addition, the ERIS model-based continuity factors were structured around organizational resilience, and the continuity factors were structured according to ERIS model under five categories: leadership, culture, people, system and environment. The results of this study are as follows. First of all, the results of existing research and analysis show that the concept of successful start-up and sustainability of start-up are used in various fields. Second, it is confirmed that there are common factors of influence on start-up performance and start-up sustainability based on ERIS model. Third, Delphi method's results showed that the general characteristics of entrepreneurs, such as academic background, education level, gender, age, and business experience did not affect the sustainability of entrepreneurship. This study is significant in that it is based on ERIS model focused on organization resilience, and ERIS-R, which integrates Strategy into System and Organization resilience into R in the field of gradually expanding start-up development and support. It is expected that the results of this study will improve the sustainability of start-up that can predict, prevent, and overcome various crises at any time.

A Study on the Determinants of Demand for Visiting Department Stores Using Big Data (POS) (빅데이터(POS)를 활용한 백화점 방문수요 결정요인에 관한 연구)

  • Shin, Seong Youn;Park, Jung A
    • Land and Housing Review
    • /
    • v.13 no.4
    • /
    • pp.55-71
    • /
    • 2022
  • Recently, the domestic department store industry is growing into a complex shopping cultural space, which is advanced and differentiated by changes in consumption patterns. In addition, competition is intensifying across 70 places operated by five large companies. This study investigates the determinants of the visits to department stores using the big data concept's automatic vehicle access system (pos) and proposes how to strengthen the competitiveness of the department store industry. We use a negative binomial regression test to predict the frequency of visits to 67 branches, except for three branches whose annual sales were incomplete due to the new opening in 2021. The results show that the demand for visiting department stores is positively associated with airport, terminal, and train stations, land areas, parking lots, VIP lounge numbers, luxury store ratio, F&B store numbers, non-commercial areas, and hotels. We suggest four strategies to enhance the competitiveness of domestic department stores. First, department store consumers have a high preference for luxury brands. Therefore, department stores need to form their own overseas buyer teams to discover and attract new luxury brands and attract customers who have a high demand for luxury brands. In addition, to attract consumers with high purchasing power and loyalty, it is necessary to provide more differentiated products and services for VIP customers than before. Second, it is desirable to focus on transportation hub areas such as train stations, airports, and terminals in Gyeonggi and Incheon. Third, department stores should attract tenants who can satisfy customers, given that key tenants are an important component of advanced shopping centers for department stores. Finally, the department store, a top-end shopping center, should be developed as a space with differentiated shopping, culture, dining out, and leisure services, such as "The Hyundai", which opened in 2021, to ensure future growth potential.

The Development and Application of the Officetel Price Index in Seoul Based on Transaction Data (실거래가를 이용한 서울시 오피스텔 가격지수 산정에 관한 연구)

  • Ryu, Kang Min;Song, Ki Wook
    • Land and Housing Review
    • /
    • v.12 no.2
    • /
    • pp.33-45
    • /
    • 2021
  • Due to recent changes in government policy, officetels have received attention as alternative assets, along with the uplift of office and apartment prices in Seoul. However, the current officetel price indexes use small-size samples and, thus, there is a critique on their accuracy. They rely on valuation prices which lag the market trend and do not properly reflect the volatile nature of the property market, resulting in 'smoothing'. Therefore, the purpose of this paper is to create the officetel price index using transaction data. The data, provided by the Ministry of Land, Infrastructure and Transport from 2005 to 2020, includes sales prices and rental prices - Jeonsei and monthly rent (and their combinations). This study employed a repeat sales model for sales, jeonsei, and monthly rent indexes. It also contributes to improving conversion rates (between deposit and monthly rent) as a supplementary indicator. The main findings are as follows. First, the officetel price index and jeonsei index reached 132.5P and 163.9P, respectively, in Q4 2020 (1Q 2011=100.0P). However, the rent index was approximately below 100.0. Sales prices and jeonsei continued to rise due to high demand while monthly rent was largely unchanged due to vacancy risk. Second, the increase in the officetel sales price was lower than other housing types such as apartments and villas. Third, the employed approach has seen a potential to produce more reliable officetel price indexes reflecting high volatility compared to those indexes produced by other institutions, contributing to resolving 'smoothing'. As seen in the application in Seoul, this approach can enhance accuracy and, therefore, better assist market players to understand the market trend, which is much valuable under great uncertainties such as COVID-19 environments.

Identifying sources of heavy metal contamination in stream sediments using machine learning classifiers (기계학습 분류모델을 이용한 하천퇴적물의 중금속 오염원 식별)

  • Min Jeong Ban;Sangwook Shin;Dong Hoon Lee;Jeong-Gyu Kim;Hosik Lee;Young Kim;Jeong-Hun Park;ShunHwa Lee;Seon-Young Kim;Joo-Hyon Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.306-314
    • /
    • 2023
  • Stream sediments are an important component of water quality management because they are receptors of various pollutants such as heavy metals and organic matters emitted from upland sources and can be secondary pollution sources, adversely affecting water environment. To effectively manage the stream sediments, identification of primary sources of sediment contamination and source-associated control strategies will be required. We evaluated the performance of machine learning models in identifying primary sources of sediment contamination based on the physico-chemical properties of stream sediments. A total of 356 stream sediment data sets of 18 quality parameters including 10 heavy metal species(Cd, Cu, Pb, Ni, As, Zn, Cr, Hg, Li, and Al), 3 soil parameters(clay, silt, and sand fractions), and 5 water quality parameters(water content, loss on ignition, total organic carbon, total nitrogen, and total phosphorous) were collected near abandoned metal mines and industrial complexes across the four major river basins in Korea. Two machine learning algorithms, linear discriminant analysis (LDA) and support vector machine (SVM) classifiers were used to classify the sediments into four cases of different combinations of the sampling period and locations (i.e., mine in dry season, mine in wet season, industrial complex in dry season, and industrial complex in wet season). Both models showed good performance in the classification, with SVM outperformed LDA; the accuracy values of LDA and SVM were 79.5% and 88.1%, respectively. An SVM ensemble model was used for multi-label classification of the multiple contamination sources inlcuding landuses in the upland areas within 1 km radius from the sampling sites. The results showed that the multi-label classifier was comparable performance with sinlgle-label SVM in classifying mines and industrial complexes, but was less accurate in classifying dominant land uses (50~60%). The poor performance of the multi-label SVM is likely due to the overfitting caused by small data sets compared to the complexity of the model. A larger data set might increase the performance of the machine learning models in identifying contamination sources.

DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA (한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발)

  • 박만배
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF