• Title/Summary/Keyword: 교통사고 예측모형

Search Result 163, Processing Time 0.022 seconds

Development of Traffic Accidents Prediction Model With Fuzzy and Neural Network Theory (퍼지 및 신경망 이론을 이용한 교통사고예측모형 개발에 관한 연구)

  • Kim, Jang-Uk;Nam, Gung-Mun;Kim, Jeong-Hyeon;Lee, Su-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.7 s.93
    • /
    • pp.81-90
    • /
    • 2006
  • It is important to clarify the relationship between traffic accidents and various influencing factors in order to reduce the number of traffic accidents. This study developed a traffic accident frequency prediction model using by multi-linear regression and qualification theories which are commonly applied in the field of traffic safety to verify the influences of various factors into the traffic accident frequency The data were collected on the Korean National Highway 17 which shows the highest accident frequencies and fatality rates in Chonbuk province. In order to minimize the uncertainty of the data, the fuzzy theory and neural network theory were applied. The neural network theory can provide fair learning performance by modeling the human neural system mathematically. Tn conclusion, this study focused on the practicability of the fuzzy reasoning theory and the neural network theory for traffic safety analysis.

Prediction Of Traffic Accident Casualties Using Machine Learning: For Seoul Public Data (머신러닝을 이용한 교통사고 사상자 수 예측:서울시 공공데이터를 대상으로)

  • Nam, Myung-woo;Park, Doo-Seo;Jang, Young-Jun;Lee, Hong-Chul
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.27-30
    • /
    • 2021
  • 경제 성장과 함께 자동차의 수요가 늘어남에 따라 교통사고 발생 빈도는 꾸준히 증가하고 있다. 이에, 본 연구에서는 교통사고를 야기하는 도로 및 기상환경과 같은 조건을 활용하여 기계학습 모델을 통해 서울시 교통사고 사상자 수를 예측하는 모형을 찾고자 한다. 활용한 데이터는 도로교통 공단에서 제공하는 교통사고 사상자 수 정보를 포함하는 데이터로 2015년부터 2018년도까지 데이터를 학습에 사용하였고 2019년도 데이터를 테스트 평가에 사용하였다. 실증연구를 통해 트리 기반의 모델 별 성능을 비교하였으며 본 연구에 대한 결과는 사고 발생 시 우선순위에 의한 구조활동이 가능하게 함과 도로상황 및 기상을 고려한 안전운전 가이드 지식으로 활용될 수 있다.

  • PDF

A Study on the Influencing Factors for Incident Duration Time by Expressway Accident (고속도로 교통사고 시 돌발상황 지속시간 영향 요인 분석)

  • Lee, Ki-Young;Seo, Im-Ki;Park, Min-Soo;Chang, Myung-Soon
    • International Journal of Highway Engineering
    • /
    • v.14 no.1
    • /
    • pp.85-94
    • /
    • 2012
  • The term "incident duration time" is defined as the time from the occurrence of incident to the completion of the handling process. Reductions in incident durations minimize damages by traffic accidents. This study aims to develop models to identify factors that influence incident duration by investigating traffic accidents on highways. For this purpose, four models were established including an integrated model (Model 1) incorporating all accident data and detailed models (Model 2, 3 and 4) analyzing accidents by location such as basic section, bridges and tunnels. The result suggested that the location of incident influences incident duration and the time of arrival of accident treatment vehicles is the most sensitive factor. Also, significant implications were identified with regard to vehicle to vehicle accidents and accidents by trucks, in night or in weekends. It is expected that the result of this study can be used as important information to develop future policies to manage traffic accidents.

Developing a Traffic Accident Prediction Model for Freeways (고속도로 본선에서의 교통사고 예측모형 개발)

  • Mun, Sung-Ra;Lee, Young-Ihn;Lee, Soo-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.2
    • /
    • pp.101-116
    • /
    • 2012
  • Accident prediction models have been utilized to predict accident possibilities in existing or projected freeways and to evaluate programs or policies for improving safety. In this study, a traffic accident prediction model for freeways was developed for the above purposes. When selecting variables for the model, the highest priority was on the ease of both collecting data and applying them into the model. The dependent variable was set as the number of total accidents and the number of accidents including casualties in the unit of IC(or JCT). As a result, two models were developed; the overall accident model and the casualty-related accident model. The error structure adjusted to each model was the negative binomial distribution and the Poisson distribution, respectively. Among the two models, a more appropriate model was selected by statistical estimation. Major nine national freeways were selected and five-year dada of 2003~2007 were utilized. Explanatory variables should take on either a predictable value such as traffic volumes or a fixed value with respect to geometric conditions. As a result of the Maximum Likelihood estimation, significant variables of the overall accident model were found to be the link length between ICs(or JCTs), the daily volumes(AADT), and the ratio of bus volume to the number of curved segments between ICs(or JCTs). For the casualty-related accident model, the link length between ICs(or JCTs), the daily volumes(AADT), and the ratio of bus volumes had a significant impact on the accident. The likelihood ratio test was conducted to verify the spatial and temporal transferability for estimated parameters of each model. It was found that the overall accident model could be transferred only to the road with four or more than six lanes. On the other hand, the casualty-related accident model was transferrable to every road and every time period. In conclusion, the model developed in this study was able to be extended to various applications to establish future plans and evaluate policies.

Classification and Prediction of Highway Accident Characteristics Using Vehicle Black Box Data (블랙박스 영상 기반 고속도로 사고유형 분류 및 사고 심각도 예측 평가)

  • Junhan Cho;Sungjun Lee;Seongmin Park;Juneyoung Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.132-145
    • /
    • 2022
  • This study was based on the black box images of traffic accidents on highways, cluster analysis and prediction model comparisons were carried out. As analysis data, vehicle driving behavior and road surface conditions that can grasp road and traffic conditions just before the accident were used as explanatory variables. Considering that traffic accident data is affected by many factors, cluster analysis reflecting data heterogeneity is used. Each cluster classified by cluster analysis was divided based on the ratio of the severity level of the accident, and then an accident prediction evaluation was performed. As a result of applying the Logit model, the accident prediction model showed excellent predictive ability when classifying groups by cluster analysis and predicting them rather than analyzing the entire data. It is judged that it is more effective to predict accidents by reflecting the characteristics of accidents by group and the severity of accidents. In addition, it was found that a collision accident during stopping such as a secondary accident and a side collision accident during lane change act as important driving behavior variables.

Development of a Safety Performance Function for Expressway Tollgates (고속도로 영업소 구간 안전성능함수 개발)

  • Lee, Taehun;Kwak, Ho-Chan;Kim, Dong-Kyu;Kho, Seung-Young
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.1
    • /
    • pp.81-89
    • /
    • 2015
  • Crashes that occur at tollgates have different characteristics compared to those of the mainline on expressways in terms of crash cause, crash type, and vehicle type. Due to this fact, the safety performance function (SPF) focused on the expressway tollgates, apart from the mainline, should be developed. The aim of this study is, therefore, to identify the influential factors and develope a SPF for crashes at tollgates. Firstly, we established independent variables affecting crashes at tollgates through literature review and descriptive statistical analysis. Based on these variables, two negative binomial regression models with different form of independent variables were developed and goodness-of-fits of each model were compared. According to the results, the number of crashes increases i) as AADT, Hi-pass rate, and heavy vehicle rate increase, ii) as average lane width decreases, iii) on the mainline tollgate type. The safety performance function developed in this study could be applied to select hot-spots for expressway tollgates.

The prediction Models for Clearance Times for the unexpected Incidences According to Traffic Accident Classifications in Highway (고속도로 사고등급별 돌발상황 처리시간 예측모형 및 의사결정나무 개발)

  • Ha, Oh-Keun;Park, Dong-Joo;Won, Jai-Mu;Jung, Chul-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.1
    • /
    • pp.101-110
    • /
    • 2010
  • In this study, a prediction model for incident reaction time was developed so that we can cope with the increasing demand for information related to the accident reaction time. For this, the time for dealing with accidents and dependent variables were classified into incident grade, A, B, and C. Then, fifteen independent variables including traffic volume, number of accident-related vehicles and the accidents time zone were utilized. As a result, traffic volume, possibility of including heavy vehicles, and an accident time zone were found as important variables. The results showed that the model has some degree of explanatory power. In addition, when the CHAID Technique was applied, the Answer Tree was constructed based on the variables included in the prediction model for incident reaction time. Using the developed Answer Tree model, accidents firstly were classified into grades A, B, and C. In the secondary classification, they were grouped according to the traffic volume. This study is expected to make a contribution to provide expressway users with quicker and more effective traffic information through the prediction model for incident reaction time and the Answer Tree, when incidents happen on expressway

Building a Traffic Accident Frequency Prediction Model at Unsignalized Intersections in Urban Areas by Using Adaptive Neuro-Fuzzy Inference System (적응 뉴로-퍼지를 이용한 도시부 비신호교차로 교통사고예측모형 구축)

  • Kim, Kyung Whan;Kang, Jung Hyun;Kang, Jong Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2D
    • /
    • pp.137-145
    • /
    • 2012
  • According to the National Police Agency, the total number of traffic accidents which occurred in 2010 was 226,878. Intersection accidents accounts for 44.8%, the largest portion of the entire traffic accidents. An research on the signalized intersection is constantly made, while an research on the unsignalized intersection is yet insufficient. This study selected traffic volume, road width, and sight distance as the input variables which affect unsignalized intersection accidents, and number of accidents as the output variable to build a model using ANFIS(Adaptive Neuro-Fuzzy Inference System). The forecast performance of this model is evaluated by comparing the actual measurement value with the forecasted value. The compatibility is evaluated by R2, the coefficient of determination, along with Mean Absolute Error (MAE) and Mean Square Error (MSE), the indicators which represent the degree of error and distribution. The result shows that the $R^2$ is 0.9817, while MAE and MSE are 0.4773 and 0.3037 respectively, which means that the explanatory power of the model is quite decent. This study is expected to provide the basic data for establishment of safety measure for unsignalized intersection and the improvement of traffic accidents.

Accident Rate Forecasting Model by Using Speed on Freeway (속도를 이용한 고속도로 구간 사고율 예측 모형)

  • Jeong, Eun-Bi;O, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.4
    • /
    • pp.103-111
    • /
    • 2011
  • The speed is one of the significant factors affecting accident occurrence. In particular, freeway accidents are highly associated with the speed because vehicles travel on the freeway at higher speed leading to greater potential of severer injury. Efforts attempting to relating speed with accident occurrence have not been significantly made in Korea. The objective of this study is to model the relationship between speed and accident rate on freeways. Loop detector data and accident data obtained from a stretch of Kyungboo freeway during the recent five years, 2005-2009, were used to establish the model. Multiple linear regression analyses showed that median, minimum and standard deviation of speed were contributing variables in the model. The statistical significance identified by the analyses supports the feasibility of the model in evaluating various transportation policies and operations strategies in terms of traffic safety.

Analysis on Comparison of Highway Accident Severity between Weekday and Weekend using Structural Equation Model (구조방정식 모형을 이용한 주중과 주말의 고속도로 사고심각도 비교분석)

  • Bae, Yun Kyung;Ahn, Sunyoung;Chung, Jin-Hyuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2483-2491
    • /
    • 2013
  • In order to identify and understand the crucial factors to induce traffic accident, causal relationships between diverse factors and traffic accident occurrence have been investigated continuously. It is one of most important issues all over the world to reduce the number of traffic accidents and deaths by them. Korea government is also stepping up their effort to reduce the number of traffic accidents and mitigate the severity of the accidents by establishing various traffic safety strategies. By introducing the five-day work week and increasing concern of leisure activities, the differences of trip characteristics between weekday and weekend is getting greater. According to this, the patterns and crucial factors of traffic accident occurrence in weekend appear differently from those in weekday. This study aims to understand major different factors affecting accident severity between weekday and weekend using 12,042 incident data occurred on freeways of Korea from 2006 to 2011. The model developed in this study estimated relationships among various exogenous factors of traffic accident by each type using SEM(Structural Equation Model). The result provides that road factors are related to the accident severity for weekday model, while environment factors affects on accident severity for weekend.