Traffic accident forecasting model has been developed steadily to understand factors affecting traffic accidents and to reduce them. In Korea, the length of highways is over 3,000km, and it is within the top ten in the world. However, the number of accidents-per-one kilometer highway is higher than any other countries. The rapid increase of travel demand and transportation infrastructures since 1980's may influence on the high rates of traffic accident. Accident severity is one of the important indices as well as the rate of accident and factors such as road geometric conditions, driver characteristics and type of vehicles may be related to traffic accident severity. However, since all these factors are interacted complicatedly, the interactions are not easily identified. A structural equations model is adopted to capture the complex relationships among variables. In the model estimation, we use 2,880 accident data on highways in Korea. The SEM with several factors mentioned above as endogenous and exogenous variables shows that they have complex and strong relationships.
YOON, Seok Min;OH, Cheol;PARK, Hyun Jin;CHUNG, Bong Jo
Journal of Korean Society of Transportation
/
v.34
no.4
/
pp.354-372
/
2016
This study identified factors affecting the crash severity at freeway work zones. A nice feature of this study was to take into account the characteristics of work zone traffic management in analyzing traffic safety concerns. In addition to crash records, vehicle detection systems (VDS) data and work zone historical data were used for establishing a dataset to be used for statistical analyses based on an ordered probit model. A total of six safety improvement strategies for freeway work zones, including traffic merging method, guidance information provision, speed management, warning information systems, traffic safety facility, and monitoring of effectiveness for countermeasures, were also proposed.
Proceedings of the Korean Society of Disaster Information Conference
/
2016.11a
/
pp.259-260
/
2016
어린이의 경우 다른 연령층에 비해 신체적, 정신적으로 완성되지 못하여 교통사고의 가능성이 높으며, 특히 전국의 어린이 교통사고는 점진적으로 감소 추세이나 인천의 어린이 교통사고는 감소하다가 다시 증가 추세에 들어선 실정이다. 따라서 본 연구의 목적은 어린이 교통사고 심각도에 영향을 미치는 주요 요인들을 발견하고 제시하고자 하였다. 순서형 로지스틱 회귀분석을 활용하여 순서척도인 반응변수에 대한 설명변수의 오즈(Odds)를 확인하고자 하였으며 안전운전불이행, 차대사람(횡단중), 차대차(측면직각충돌)사고가 유의한 결과로 나타났다. 안전운전불이행으로 인한 사망사고와 기타사고의 오즈차이는 1.35배, 측면직각충돌로 인한 사망사고와 기타사고의 오즈차이는 1.76배 증가하는 것으로 나타났고, 횡단중인 경우에는 오히려 사망 위험도의 오즈값이 0.58배로 감소하는 것으로 나타났다.
KIPS Transactions on Software and Data Engineering
/
v.10
no.8
/
pp.301-310
/
2021
The TATI model is a Traffic Accident Text to RGB Image model, which is a methodology proposed in this paper for predicting the severity of traffic accidents. Traffic fatalities are decreasing every year, but they are among the low in the OECD members. Many studies have been conducted to reduce the death rate of traffic accidents, and among them, studies have been steadily conducted to reduce the incidence and mortality rate by predicting the severity of traffic accidents. In this regard, research has recently been active to predict the severity of traffic accidents by utilizing statistical models and deep learning models. In this paper, traffic accident dataset is converted to color images to predict the severity of traffic accidents, and this is done via CNN models. For performance comparison, we experiment that train the same data and compare the prediction results with the proposed model and other models. Through 10 experiments, we compare the accuracy and error range of four deep learning models. Experimental results show that the accuracy of the proposed model was the highest at 0.85, and the second lowest error range at 0.03 was shown to confirm the superiority of the performance.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.16
no.4
/
pp.1-12
/
2017
Traffic accidents are caused by a combination of human factors, vehicle factors, and environmental factors. In the case of traffic accidents where rental cars are involved, the possibility and the severity of traffic accidents are expected to be different from those of other traffic accidents due to the unfamiliar environment of the driver. In this study, we developed a model to forecast the severity of rental car accidents by using Naive Bayes classifier for Busan, Gangneung, and Jeju city. In addition, we compared the prediction accuracy performance of two models where one model uses the variables of which statistical significance were verified in a prior study and another model uses the entire available variables. As a result of the comparison, it is shown that the prediction accuracy is higher when using the variables with statistical significance.
The major purpose of this study is to evaluate methodologies to predict the injury severity of pedestrian-vehicle collisions. Methodologies to be evaluated and compared in this study include Binary Logistic Regression(BLR), Ordered Probit Model(OPM), Support Vector Machine(SVM) and Decision Tree(DT) method. Valuable insights into applying methodologies to analyze the characteristics of pedestrian injury severity are derived. For the purpose of identifying causal factors affecting the injury severity, statistical approaches such as BLR and OPM are recommended. On the other hand, to achieve better prediction performance, heuristic approaches such as SVM and DT are recommended. It is expected that the outcome of this study would be useful in developing various countermeasures for enhancing pedestrian safety.
This research wished to risk type and examine closely driver special quality and relation of traffic accidents by occurrence type of traffic accidents and traffic accidents seriousness examine closely relation with Severity. Fractionate traffic accidents type by eight, and driver's special quality for risk group's classification did to distinction of sex, vehicle type, age etc. analyzed relation with injury degree adding belt used putting on availability for security the objectivity with wave. Used log-Linear model and Logit model for analysis of category data. A head-on collision and overtaking accident, right-turn accident are high injury or death accident and possibility to associate in relation with accident type and seriousness degree. In risk group analysis The age less than 20 years in motor-cycle driver, taxi driver in 41 years to 50 years old are very dangerous. The woman also was construed to the more risk group than man from when related to car, mini-bus, goods vehicle etc. Therefore, traffic safety education and Enforcement for risk group that way that can reduce accident that produce to reduce a loss of lives at traffic accidents appearance a head-on collision and overtaking accidents, right-turn accidents should be studied and as traffic accidents weakness class may have to be solidified.
The Journal of the Korea institute of electronic communication sciences
/
v.15
no.6
/
pp.1123-1130
/
2020
This study aims to classify the severity in car crashes using five classification learning models. The dataset used in this study contains 21,013 vehicle crashes, obtained from Korea Expressway Corporation, between the year of 2015-2017 and the LightGBM(Light Gradient Boosting Model) performed well with the highest accuracy. LightGBM, the number of involved vehicles, type of accident, incident location, incident lane type, types of accidents, types of vehicles involved in accidents were shown as priority factors. Based on the results of this model, the establishment of a management strategy for response of highway traffic accident should be presented through a consistent prediction process of accident severity level. This study identifies applicability of Machine Learning Models for Predicting of the Severity of Car Traffic Accidents on a Highway and suggests that various machine learning techniques based on big data that can be used in the future.
KSCE Journal of Civil and Environmental Engineering Research
/
v.33
no.3
/
pp.1105-1113
/
2013
Understanding the characteristics of truck-involved crashes is of keen interest because such crashes are highly associated with greater potential leading to severer injury. The purpose of this study is to identify factors affecting injury severity of truck-involved crashes on freeways. In addition, a binary logistic regression technique is applied to identify causal factors affecting truck crash severity under normal and adverse weather conditions. Major findings from the analyses are discussed with truck operations strategies including speed enforcement, variable speed limit, and truck lane restriction, from the safety enhancement point of view. The results of this study would be useful for developing traffic control and operations strategies to reduce truck-involved crashes and injury severity in practice.
On January 1, 2003, the motor vehicle management system in Korea was transformed from government's vehicle type approval to manufacturer's self-certification. The motor vehicle recall system with self-certification is an essential mechanism to place the liability of the vehicle defects on manufacturers and hence protect consumers from automobile accidents. This study provides a methodology to measure the benefits of motor vehicle recall system in two categories: benefits of reduction in traffic accidents and benefits of severity reduction in traffic accident. Applying the proposed methodology, the benefits of implementing motor vehicle recall system in Korea were estimated. It was estimated that 745 traffic accidents, 12 fatal accidents, and 1473 injury accidents were respectively reduced in 2002 due to implementation of motor vehicle recall system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.