The Journal of The Korea Institute of Intelligent Transport Systems
/
v.14
no.2
/
pp.1-13
/
2015
Traffic volume data is basic information that is used in a wide variety of fields. Existing missing traffic volume data imputation method did not take the effect on the rainfall. This research analyzed considering of the rainfall effect in missing traffic volume data imputation method. In order to consider the effect of rainfall, established the following assumption. When missing of traffic volume data generated in rainy days it would be more accurate to use only the traffic volume data of the past rainy days. To confirm this assumption, compared for accuracy of imputed results at three kinds of imputation method(Unconditional Mean, Auto Regression, Expectation-Maximization Algorithm). The analysis results, the case on consideration of the rainfall effect was more low error occurred.
Up to now Permanent traffic volumes have been counted by Automatic Vehicle Classification (AVC) on National Highways. When counted data have missing items or errors, the data must be revised to stay statistically reliable This study was carried out to estimate correct data based on outoregression and seasonal AutoRegressive Integrated Moving Average (ARIMA). As a result of verification through seasonal ARIMA, the longer the missed period is, the greater the error. Autoregression results in better verification results than seasonal ARIMA. Traffic data is affected by the present state mote than past patterns. However. autoregression can be applied only to the cases where data include similar neighborhood patterns and even in this case. the data cannot be corrected when data are missing due to low qualify or errors Therefore, these data shoo)d be corrected using past patterns and seasonal ARIMA when the missing data occurs in short periods.
KSCE Journal of Civil and Environmental Engineering Research
/
v.33
no.5
/
pp.2009-2019
/
2013
Traffic volumes are the important basic data which are directly used for transportation network planning, highway design, highway management and so forth. They are collected by two types of collection methods, one of which is the continuous traffic counts and the other is the short duration traffic counts. The continuous traffic counts are conducted for 365 days a year using the permanent traffic counter and the short duration traffic counts are conducted for specific day(s). In case of the continuous traffic counts the missing of data occurs due to breakdown or malfunction of the counter from time to time. Thus, the diverse imputation methods have been developed and applied so far. In this study the applied exponential smoothing method, in which the data from the days before and after the missing day are used, is proposed and compared with other imputation methods. The comparison shows that the applied exponential smoothing method enhances the accuracy of imputation when the coefficient of traffic volume variation is low. In addition, it is verified that the variation of traffic volume at the site is an important factor for the accuracy of imputation. Therefore, it is necessary to apply different imputation methods depending upon site and time to raise the reliability of imputation for missing traffic values.
In the transportation planning process, origin and destination(O-D) trip matrix is one of the most important elements. There have been developments and applications of the methodology to adjust old matrices using link traffic counts. Commonly, the accuracy of an adjusted O-D matrix depends very much on the reliability of the input data such as the numbers and locations of traffic counting points in the road network. In the real application of the methodology, decisions on the numbers and locations of traffic counting points are one of the difficult problems, because usually as networks become bigger, the numbers of traffic counting points are required more. Therefore, this paper investigates these issues as an experiment using a nationwide network in Korea. We have compared and contrasted the set of link flows assigned by the old and the adjusted O-D matrices with the set of observed link flows. It has been analyzed by increasing the number of the traffic counting points on the experimental road network. As a result of these analyses, we can see an optimal set of the number of counting links through statistical analysis, which are approximately ten percentages of the total link numbers. In addition, the results show that the discrepancies between the old and the adjusted matrices in terms of the trip length frequency distributions and the assigned and the counted link flows are minimized using the optimal set of the counted links.
Traffic data by vehicle classification are important data used as basic data in various fields such as road and traffic design. Traffic data is collected through permanent and temporary surveys and is provided as an annual average daily traffic (AATD) in the statistical yearbook of road traffic. permanent surveys are collected through traffic collection equipment (AVC), and the AVC consists of a loop sensor that detects traffic volume and a piezo sensor that detects the number of axes. Due to the nature of the buried type of traffic collection equipment, missing data is generated due to failure of detection equipment. In the existing method, it is corrected through historical data and the trend of traffic around the point. However, this method has a disadvantage in that it does not reflect temporal and spatial characteristics and that the existing data used for correction may also be a correction value. In this study, we proposed a method to correct the missing traffic volume by calculating the axis correction coefficient through the accumulated number of axes acquired by using a piezo sensor that can detect the axis of the vehicle. This has the advantage of being able to reflect temporal and spatial characteristics, which are the limitations of the existing methods, and as a result of comparative evaluation, the error rate was derived lower than that of the existing methods. The traffic volume correction system using axis count is judged as a correction method applicable to the field system with a simple algorithm.
Kim, Hyeon-Seok;Im, Gang-Won;Lee, Yeong-In;Nam, Du-Hui
Journal of Korean Society of Transportation
/
v.25
no.4
/
pp.109-121
/
2007
In this study, an imputation model using circular probability distribution was developed in order to overcome problems of missing data from a traffic survey. The existing ad-hoc or heuristic, model-based and algorithm-based imputation techniques were reviewed through previous studies, and then their limitations for imputing missing traffic volume data were revealed. The statistical computing language 'R' was employed for model construction, and a mixture of von Mises probability distribution, which is classified as symmetric, and unimodal circular probability were finally fitted on the basis of traffic volume data at survey stations in urban and rural areas, respectively. The circular probability distribution model largely proved to outperform a dummy variable regression model in regards to various evaluation conditions. It turned out that circular probability distribution models depict circularity of hourly volumes well and are very cost-effective and robust to changes in missing mechanisms.
교통정책을 평가하기 위해 기본적으로 요구되는 Data 중 가장 근본이 되는 것이 OD이다. 기존의 교통정책을 평가함에 있어서 일반적으로 사용되고 있는 OD는 AADT(Annual Average Daily Traffic) OD이다. 계절별 평일/주말 교통량의 분산이 매우 크다는 것은 기존 조사나 연구로 익히 알려진 사실이며, 또한 사회 경제적인 여건의 변화 및 주 5일제 근무제의 시행 등으로 여가통행의 비중이 높아짐에 따라 평일과 주말의 교통량의 분산은 더욱 커질 것으로 예상된다. 따라서 교통정책을 평가하는 방법도 AADT OD의 일률적인 적용이 아닌 교통량의 계절별 평일/주말의 분산을 적용시킨 OD를 가지고 교통정책을 평가하는 방법이 교통정책을 결정함에 있어 오류를 범할 가능성을 적게 될 것으로 예상된다. 기존 연구에서는 이러한 교통량의 분산의 보정을 지점교통량에 한정하여 보정하고 있어 실질적인 네트워크 분석에 적용하기에는 무리가 있다. 이에 본 연구에서는 관측된 TCS Data를 이용하여 계절별 평일/주말의 OD 교통 패턴을 분석하여 계절별 평일/주말의 OD 교통패턴을 반영할 수 있는 보정계수를 산출하고 산출된 보정계수에 따라 AADT OD를 보정하여 네트워크 분석의 기초 자료를 구축하였다. 수정된 OD 교통량의 검증을 위하여 기존의 AADT OD의 인구당 통행발생비율과 계절별 평일/주말 OD의 통행발생량을 비교하였다. 그 결과 소수점 두 자리수에서 오차가 발생하여 비교적 합리적인 OD가 추정되었다. 또한 기존의 AADT OD를 이용하여 정책 결정을 할 때의 오류 가능성을 보이기 위하여 각 계절별 평일/주말 OD 교통량과 기존의 AADT OD를 입력 자료로 각각의 네트워크 분석 후 총통행시간의 차이를 분석하였다. 그 결과 정책 결정에 영향을 미칠 수 있을 정도의 차이가 있는 것으로 분석되었다.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.20
no.6
/
pp.1-13
/
2021
In this study, a time series analysis technique was applied to calibrate and predict traffic data for various purposes, such as planning, design, maintenance, and research. Existing algorithms have limitations in application to data such as traffic data because they show strong periodicity and seasonality or irregular data. To overcome and supplement these limitations, we applied the SARIMA model, an analytical technique that combines the autocorrelation model, the Seasonal Auto Regressive(SAR), and the seasonal Moving Average(SMA). According to the analysis, traffic volume prediction using the SARIMA(4,1,3)(4,0,3) 12 model, which is the optimal parameter combination, showed excellent performance of 85% on average. In addition to traffic data, this study is considered to be of great value in that it can contribute significantly to traffic correction and forecast improvement in the event of missing traffic data, and is also applicable to a variety of time series data recently collected.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.11
no.2
/
pp.10-20
/
2012
This study shows how to estimate AADT(Annual Average Daily Traffic) on temporary count data using new grouping method. This study deals with clustering permanent traffic counts using monthly adjustment factor, daily adjustment factor and a percentage of hourly volume. This study uses a percentage of hourly volume comparing with other studies. Cluster analysis is used and 5 groups is suitable. First, make average of monthly adjustment factor, average of daily adjustment factor, a percentage of hourly volume for each group. Next estimate AADT using 24 hour volume(not holiday) and two adjustment factors. Goodness of fit test is used to find what groups are applicable. MAPE(Mean Absolute Percentage Error) is 8.7% in this method. It is under 1.5% comparing with other method(using adjustment factors in same section). This method is better than other studies because it can apply all temporary counts data.
현재 고속도로 교통관리시스템(FTMS)에 사용되고 있는 차량 검지기는 주로 루프 식 검지기가 이용되고 있으나, 유지관리에 많은 어려움이 있다. 본 연구에서는 이러한 문제 점을 갖고 있는 루프 검지기를 대체하기 위한 대체 검지기를 개발하는데 그 목적이 있다. 자기 검지기 신뢰도 평가는 현장 실험으로 이루어지며 비디오 촬영 및 루프 검지기, test car를 이용하여 교통량·속도·점유율의 기준자료를 마련하고 자기 검지기 자료와 비교·분석 및 통계적 검정을 실시하였다. 1차 실험과 2차 실험의 결과, 교통량과 속도는 실측자료와 유사했으나 점유율은 실측치와 다소 차이가 발생함을 보였다. 향후 점유율에 대한 보정이 이루어진다면 현재 사용중인 루프 검지기를 대체할 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.