• Title/Summary/Keyword: 교차축

Search Result 107, Processing Time 0.026 seconds

Parallel Self-Collision Detection for Large 3D Mesh Model using GPU (GPU를 이용한 대용량 3D 메쉬 모델에 대한 병렬 자체 충돌검사)

  • Park, Sung-Hun;Kim, Yangen;Choi, Yoo-Joo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.708-711
    • /
    • 2022
  • 본 논문은 3D 프린팅 출력 성공률을 높이기 위해 GPU를 이용한 대용량 3D 메쉬 모델에 대한 병렬 자체충돌 검사 방법을 제안한다. 강인하고 견고한 자체 충돌 검사를 위해 분리축 검사, 삼각형-삼각형 교차 검사, 메쉬 연결성 검사, 대용량 메쉬를 위한 분할 처리 기법의 절차를 제안한다. 이러한 자체 충돌 검사를 빠르게 수행하기 위하여 GPU 기반 병렬처리 구현 방법을 제시한다.

A Numerical Analysis on the Diaphragm and Cutout Structures for Improvement of Structure Performance in Orthotropic Steel Decks (강바닥판 구조성능 개선을 위한 보강재 설치에 관한 매개변수해석)

  • Shin, Jae-Choul;An, Ju-Og
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.41-47
    • /
    • 2009
  • Transverse rib web of orthotropic steel decks is highly susceptible to stress concentration due to out-of-plane and oil canning deformation caused by longitudinal rib distortion. In particular, stress concentrations are observed in the crossing point of longitudinal rib-transverse rib-deck plate, and cutout parts of transverse rib. The main objective of this study is to improve structure performance and to reduce the stress concentration of aforementioned susceptible parts. It is known that the installation of diaphragm alleviates stress concentrations between crossing point ant cutout. The influence of transverse rib placement and cutout width on stress concentrations was thoroughly investigated through numerical analyses. The numerical result showed that diaphragms produce the structural details for improved structure performance, when the transverse rib was placed in the same location with diaphragms. In any case, it is certain that the installation of diaphragms has more advantageous than the case without diaphragms in terms of structure performance of orthotropic steel decks. In this study, the distance ratio($y_i/y_{total}$) is defined as the ratio of the distance($y_{total}$) between the deck plate and longitudinal rib bottom to the distance($y_i$) between the deck plate and crossing point of longitudinal rib-transverse rib in cutout part. It has been found that the optimal distance ratio was 0.85 from the numerical simulation.

Performance Enhancement of Attitude Estimation using Adaptive Fuzzy-Kalman Filter (적응형 퍼지-칼만 필터를 이용한 자세추정 성능향상)

  • Kim, Su-Dae;Baek, Gyeong-Dong;Kim, Tae-Rim;Kim, Sung-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2511-2520
    • /
    • 2011
  • This paper describes the parameter adjustment method of fuzzy membership function to improve the performance of multi-sensor fusion system using adaptive fuzzy-Kalman filter and cross-validation. The adaptive fuzzy-Kanlman filter has two input parameters, variation of accelerometer measurements and residual error of Kalman filter. The filter estimates system noise R and measurement noise Q, then changes the Kalman gain. To evaluate proposed adaptive fuzzy-Kalman filter, we make the two-axis AHRS(Attitude Heading Reference System) using fusion of an accelerometer and a gyro sensor. Then we verified its performance by comparing to NAV420CA-100 to be used in various fields of airborne, marine and land applications.

A Method for Estimating a Distance Using the Stereo Zoom Lens Module (양안 줌렌즈를 이용한 물체의 거리추정)

  • Hwang, Eun-Seop;Kim, Nam;Kwon, Ki-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.537-543
    • /
    • 2006
  • A method of estimating the distance using single zoom camera limits a distance range(only optical axis) in field of view. So, in this paper, we propose a method of estimating the distance information in Stereoscopic display using the stereo zoom lens module for estimating the distance in the wide range. The binocular stereo zoom lens system is composed using a horizontal moving camera module. The left and right images are acquired in polarized stereo monitor for getting the conversion and estimating a distance. The error distance is under 10mm which has difference between optically a traced distance and an estimated distance in left and right range $(0mm{\sim}500mm)$ at center. This presents the system using a function of the zoom and conversion has more precise distance information than that of conversion control. Also, a method of estimating a distance from horizontal moving camera is more precise value than that from toe-in camera by comparing the error distance of the two camera methods.

On the Introduction of the Internal Metering Policy in COSMOS (서울시 실시간 신호제어시스템(COSMOS)내 내부미터링 제어전략 도입 방안)

  • 이승환;이상수;이성호
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.4
    • /
    • pp.79-90
    • /
    • 2003
  • Internal metering policy(IMP) is a control strategy to improve the quality of traffic flow within a network by avoiding queue spillback or intersection blockage. It is a more aggressive control strategy than the current control strategy employed in COSMOS. A preliminary study was made to incorporate the IMP logic within the COSMOS system to improve its' functionality at oversaturated conditions. From the study results, a set of guideline for real implementation was recommended : traffic conditions, detector configurations, and control procedures, etc. A simulation study was performed to evaluate the effectiveness of the proposed guidelines. It was shown that the occurrence of queue spillback was minimized. and overall network performance was also improved by applying IMP logic as compared to COSMOS control onl.

Prism-based Mesh Culling Method for Effective Continuous Collision Detection (효율적인 연속 충돌감지를 위한 프리즘 기반의 메쉬 컬링 기법)

  • Woo, Byung-Kwang;You, Hyo-Sun;Choi, Yoo-Joo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.15 no.4
    • /
    • pp.1-11
    • /
    • 2009
  • In this paper, we present a prism-based mesh culling method to improve effectiveness of continuous collision detection which is a major bottleneck in a simulation using polygonal mesh models. A prism is defined based on two matching triangles between a sequence of times m a polygonal model. In order to detect potential colliding set(PCS) of prism between two polygonal models in a unit time, we apply the visibility test based on the occlusion query to two sets of prisms which are defined from two polygonal models in a unit time. Moreover, we execute the narrow band culling based on SAT(Separating Axis Test) to define potential colliding prism pairs from PCS of prisms extracted as a result of the visibility test. In the SAT, we examine one axis to be perpendicular to a plane which divides a 3D space into two half spaces to include each prism. In the experiments, we applied the proposed culling method to pairs of polygonal models with the different size and compared the number of potential colliding prism pairs with the number of all possible prism pairs of two polygonal models. We also compared effectiveness and performance of the visibility test-based method with those of the SAT-based method as the second narrow band culling. In an experiment using two models to consist of 2916 and 2731 polygons, respectively, we got potential colliding prism pairs with 99 % of culling rate.

  • PDF

Target Classification Algorithm Using Complex-valued Support Vector Machine (복소수 SVM을 이용한 목표물 식별 알고리즘)

  • Kang, Youn Joung;Lee, Jaeil;Bae, Jinho;Lee, Chong Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.182-188
    • /
    • 2013
  • In this paper, we propose a complex-valued support vector machine (SVM) classifier which process the complex valued signal measured by pulse doppler radar (PDR) to identify moving targets from the background. SVM is widely applied in the field of pattern recognition, but features which used to classify are almost real valued data. Proposed complex-valued SVM can classify the moving target using real valued data, imaginary valued data, and cross-information data. To design complex-valued SVM, we consider slack variables of real and complex axis, and use the KKT (Karush-Kuhn-Tucker) conditions for complex data. Also we apply radial basis function (RBF) as a kernel function which use a distance of complex values. To evaluate the performance of the complex-valued SVM, complex valued data from PDR were classified using real-valued SVM and complex-valued SVM. The proposed complex-valued SVM classification was improved compared to real-valued SVM for dog and human, respectively 8%, 10%, have been improved.

Constitutive Model for Hardening Materials such as Rock or Concrete (암석이나 콘크리트와 같은 경화재료에 대한 구성모델)

  • Kang, Byung Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.161-171
    • /
    • 1993
  • The aim of this study is to provide the stress-strain behavior of hardening geological materials such as rock or concrete on three dimensional spaces by using Desai model based on plastic theory. To validate proposed model, truly triaxial tests with high pressure under variety of stress paths in which three principal stresses were controlled independently using concrete materials were performed. The main results are summerized as follows: 1. Various stress paths for hardening materials used are satisfactorily explained by performing the truly triaxial test with high pressure. This is very important to investigate constitutive equations for materials like rock or concrete. 2. Since the proposed yield function is continuous, it avoids the singularity point at the intersection of two function in the previous models, thus, reducing the difficulties for computer implementation. 3. Analytic predictions for yielding behavior on $J_1-{\sqrt{J_{2D}}}$ octahedral and triaxial plane, as well as volumetric strain and stress-strain behavior agree well with experimental results.

  • PDF

A Novel Method for Emotion Recognition based on the EEG Signal using Gradients (EEG 신호 기반 경사도 방법을 통한 감정인식에 대한 연구)

  • Han, EuiHwan;Cha, HyungTai
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.7
    • /
    • pp.71-78
    • /
    • 2017
  • There are several algorithms to classify emotion, such as Support-vector-machine (SVM), Bayesian decision rule, etc. However, many researchers have insisted that these methods have minor problems. Therefore, in this paper, we propose a novel method for emotion recognition based on Electroencephalogram (EEG) signal using the Gradient method which was proposed by Han. We also utilize a database for emotion analysis using physiological signals (DEAP) to obtain objective data. And we acquire four channel brainwaves, including Fz (${\alpha}$), Fp2 (${\beta}$), F3 (${\alpha}$), F4 (${\alpha}$) which are selected in previous study. We use 4 features which are power spectral density (PSD) of the above channels. According to performance evaluation (4-fold cross validation), we could get 85% accuracy in valence axis and 87.5% in arousal. It is 5-7% higher than existing method's.

Study of Apparent Mass and Apparent Eccentric Mass to Vertical Whole-body Vibration by Using Strain-gage Type Six-axis Force Plate (6축 힘측정판을 이용한 수직방향 전신진동에 대한 겉보기질량 및 겉보기편심질량에 대한 고찰)

  • Jeon, Gyeoung-Jin;Kim, Min-Seok;Ahn, Se-Jin;Jeong, Weui-Bong;Yoo, Wan-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.897-904
    • /
    • 2011
  • When whole-body is exposed to vertical vibration, asymmetry shape of human body affects the response on the translational(fore-aft, lateral, vertical) and rotational(roll, pitch, yaw) motion. While the translational motion has been studied with various titles, it has been rare to study the rotational motion of human body exposed to vertical excitation because of lack of experimental equipment. This study was performed by using a 6-axis force plate installing strain gage type sensors for the rotational response. Sixteen male subjects were exposed to vertical vibration on rigid seat in order to investigate apparent mass of three translational motion and apparent eccentric mass of three rotational motion. Random signal was generated to make excitation vibration which was on an effective frequency range of 3~40 Hz, and magnitude of 0.224 m/$s^2$ r.m.s. The frequency range and magnitude used was selected for the vibration of passenger vehicle on idling condition. As the result, cross-axis apparent masses of fore-and-aft and lateral direction were not significant showing 20 % and 3 % of vertical apparent mass relatively. And apparent eccentric mass of pitch motion was dominant when compared to that of roll and yaw motion, which is reasoned by asymmetry direction of human body sitting on a seat.