• Title/Summary/Keyword: 교차검증방법

Search Result 272, Processing Time 0.024 seconds

Optimal number of dimensions in linear discriminant analysis for sparse data (희박한 데이터에 대한 선형판별분석에서 최적의 차원 수 결정)

  • Shin, Ga In;Kim, Jaejik
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.6
    • /
    • pp.867-876
    • /
    • 2017
  • Datasets with small n and large p are often found in various fields and the analysis of the datasets is still a challenge in statistics. Discriminant analysis models for such datasets were recently developed in classification problems. One approach of those models tries to detect dimensions that distinguish between groups well and the number of the detected dimensions is typically smaller than p. In such models, the number of dimensions is important because the prediction and visualization of data and can be usually determined by the K-fold cross-validation (CV). However, in sparse data scenarios, the CV is not reliable for determining the optimal number of dimensions since there can be only a few observations for each fold. Thus, we propose a method to determine the number of dimensions using a measure based on the standardized distance between the mean values of each group in the reduced dimensions. The proposed method is verified through simulations.

Car Collision Verification System for the Ubiquitous Parking Management (유비쿼터스 주차관리를 위한 차량충돌 검증시스템)

  • Mateo, Romeo Mark A.;Yang, Hyun-Ho;Lee, Jae-Wan
    • Journal of Internet Computing and Services
    • /
    • v.12 no.5
    • /
    • pp.101-111
    • /
    • 2011
  • Most researches in WSN-based parking management system used wireless sensors to monitor the events in a car parking area. However, the problem of car collisions in car parks was not discussed by previous researches. The car position details over time are vital in analyzing a collision event. This paper proposes a collision verification method to detect and to analyze the collision event in the parking area, and then notifies car owners. The detection uses the information from motion sensors for comprehensive details of position and direction of a moving car, and the verification processes an object tracking technique with a fast OBB intersection test. The performance tests show that the location technique is more accurate with additional sensors and the OBB collision test is faster compared to a normal OBB intersection test.

A Study on the Prediction of Traffic Counts Based on Shortest Travel Path (최단경로 기반 교통량 공간 예측에 관한 연구)

  • Heo, Tae-Young;Park, Man-Sik;Eom, Jin-Ki;Oh, Ju-Sam
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.3
    • /
    • pp.459-473
    • /
    • 2007
  • In this paper, we suggest a spatial regression model to predict AADT. Although Euclidian distances between one monitoring site and its neighboring sites were usually used in the many analysis, we consider the shortest travel path between monitoring sites to predict AADT for unmonitoring site using spatial regression model. We used universal Kriging method for prediction and found that the overall predictive capability of the spatial regression model based on shortest travel path is better than that of the model based on multiple regression by cross validation.

Experimental Validation on Underwater Sound Speed Measurement Method Using Cross-Correlation of Time-Domain Acoustic Signals in a Reverberant Water Tank (잔향 수조에서의 시간 이력 수음 신호 간 교차상관을 이용한 수중 음속 계측 방법에 관한 실험적 검증)

  • Joo-Yeob Lee;Kookhyun Kim;Sung-Ju Park;Dae-Seung Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • Underwater sound speed is an important analysis parameter on an estimation of the underwater radiated noise (URN) emitted from vessels. This paper aims to present an underwater sound speed measurement procedure using a cross-correlation of time-domain acoustic signals and validate the procedure through an experiment in a reverberant water tank. For the purpose, time-domain acoustic signals transmitted by a Gaussian pulse excitation from an acoustic projector have been measured at 20 hydrophone positions in the reverberant water tank. Then, the sound speed in water has been calculated by a linear regression using 190 cross-correlation cases of distances and time lags between the received signals and the result has been compared with those estimated by the existing empirical formulae. From the result, it is regarded that the presented experimental procedure to measure an underwater sound speed is reliably applicable if the time resolution is sufficiently high in the measurement.

Determination of Intersection Level of Service Based on Intersection Delay Measures (교차로지체측정치에 의한 교차로 서비스수준결정에 관한 연구)

  • 김광식
    • Journal of Korean Society of Transportation
    • /
    • v.3 no.1
    • /
    • pp.86-93
    • /
    • 1985
  • 1965년에 출판된 고속도로용량교범(Highway Capacity Manual)은 고속도로, 도시 및 지방도로의 용량과 서비스수준을 판단하는데 기본서 역할을 해왔다. 도시내 신호등이 있는 교차로의 서비스수준은 빈하율(load factor) 개념을 이용하여 산정해 왔다. 그러나 푸른신호 주기동안 차량의 교차로이용도를 기준으로 하는 빈하율 개념은 서비스 수준의 측정치로서 한계가 있고 또 그동안 신호체계가 많이 개선되었고 운전자의 통행행태가 크게 변화하여 1970년대 중반부터 한계통행분석법(Critical Movement Analysis)과 차량의 교차로지체시간 측정법(Intersection Delay)등과 같은 새로운 기법이 소개되었다. 본 논문은 최근에 많이 이 용되고 있는 교차로지체시간측정법의 유용성을 검증하기 위해 15개 교차로의 차량통행량을 기준으로 하여 V/C비를 계산하는 한계통행분석법에 의한 측정치와 비교, 분석하였다. 그 결 과 교차로의 서비스수준을 측정하는데 양자의 방법에 의한 측정치가 크게 다르지 않음을 발 견하였다. 즉 도시내 신호등이 있는 교차로시설을 개선하기 위해 대략적인 교차로 서비스수 준을 측정할 경우 조사인원 및 비용이 많이 소요되는 한계통행분석법보다 조사가 간편하고 비용이 적게 드는 교차로지체시간측정법이 유용함을 밝혔다.

  • PDF

딥러닝을 활용한 선박가치평가 모델 개발

  • Choi, Jung-suk;Kim, Donggyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2020.11a
    • /
    • pp.108-110
    • /
    • 2020
  • 본 연구의 목적은 딥러닝 기법의 하나인 인공신경망 모델을 활용하여 선박의 가치평가 모델을 개발하는 것이다. 선박의 가치는 해운시장 변화와 밀접한 관계가 있으며, 경기 변동성이 크고 시장 민감성이 높은 해운시장의 특성상 가치의 불확실성 역시 높게 나타나고 있다. 이러한 선박가치의 중요성에도 불구하고 국내외적으로 선박가치평가의 체계 개선 및 평가모델의 객관성과 신뢰성을 제고시키기 위한 연구는 부족한 실정이다. 따라서 본 연구에서는 딥러닝 방법을 통해 선박의 가치를 산출하는 새로운 평가모델을 제시하고자 한다. 가치평가의 대상은 중고 VLCC선이며, 선행연구를 통해 선박의 가치 변화를 유발하는 주요 요인들을 선별하여 변수를 설정하고 2010년 1월부터 현재까지의 해당 데이터를 확보하였다. 교차검증을 통해 파라미터들을 추정하여 인공신경망의 최적 구조를 식별하고 이에 대한 객관성과 신뢰성을 검증한 결과 인공신경망 모델의 가치평가 정확성이 우수함을 확인하였다. 본 연구는 선박가치평가의 전통적 방법론에서 탈피하여 기계학습 기반의 딥러닝 모델을 활용한 측면에서 독창적인 의미가 있다.

  • PDF

Development of a CNN-based Cross Point Detection Algorithm for an Air Duct Cleaning Robot (CNN 기반 공조 덕트 청소 로봇의 교차점 검출 알고리듬 개발)

  • Yi, Sarang;Noh, Eunsol;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.1-8
    • /
    • 2020
  • Air ducts installed for ventilation inside buildings accumulate contaminants during their service life. Robots are installed to clean the air duct at low cost, but they are still not fully automated and depend on manpower. In this study, an intersection detection algorithm for autonomous driving was applied to an air duct cleaning robot. Autonomous driving of the robot was achieved by calculating the distance and angle between the extracted point and the center point through the intersection detection algorithm from the camera image mounted on the robot. The training data consisted of CAD images of the duct interior as well as the cross-point coordinates and angles between the two boundary lines. The deep learning-based CNN model was applied as a detection algorithm. For training, the cross-point coordinates were obtained from CAD images. The accuracy was determined based on the differences in the actual and predicted areas and distances. A cleaning robot prototype was designed, consisting of a frame, a Raspberry Pi computer, a control unit and a drive unit. The algorithm was validated by video imagery of the robot in operation. The algorithm can be applied to vehicles operating in similar environments.

Comparative analysis of spatial interpolation methods of PM10 observation data in South Korea (남한지역 PM10 관측자료의 공간 보간법에 대한 비교 분석)

  • Kang, Jung-Hyuk;Lee, Seoyeon;Lee, Seung-Jae;Lee, Jae-Han
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.2
    • /
    • pp.124-132
    • /
    • 2022
  • This study was aimed to visualize the spatial distribution of PM10 data measured at non-uniformly distributed observation sites in South Korea. Different spatial interpolation methods were applied to irregularly distributed PM10 observation data from January, 2019, when the concentration was the highest and in July, 2019, when the concentration was the lowest. Four interpolation methods with different parameters were used: Inverse Distance Weighted (IDW), Ordinary Kriging (OK), radial base function, and scattered interpolation. Six cases were cross-validated and the normalized root-mean-square error for each case was compared. The results showed that IDW using smoothing-related factors was the most appropriate method, while the OK method was least appropriate. Our results are expected to help users select the proper spatial interpolation method for PM10 data analysis with comparative reliability and effectiveness.

2D-QSAR analysis for hERG ion channel inhibitors (hERG 이온채널 저해제에 대한 2D-QSAR 분석)

  • Jeon, Eul-Hye;Park, Ji-Hyeon;Jeong, Jin-Hee;Lee, Sung-Kwang
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.533-543
    • /
    • 2011
  • The hERG (human ether-a-go-go related gene) ion channel is a main factor for cardiac repolarization, and the blockade of this channel could induce arrhythmia and sudden death. Therefore, potential hERG ion channel inhibitors are now a primary concern in the drug discovery process, and lots of efforts are focused on the minimizing the cardiotoxic side effect. In this study, $IC_{50}$ data of 202 organic compounds in HEK (human embryonic kidney) cell from literatures were used to develop predictive 2D-QSAR model. Multiple linear regression (MLR), Support Vector Machine (SVM), and artificial neural network (ANN) were utilized to predict inhibition concentration of hERG ion channel as machine learning methods. Population based-forward selection method with cross-validation procedure was combined with each learning method and used to select best subset descriptors for each learning algorithm. The best model was ANN model based on 14 descriptors ($R^2_{CV}$=0.617, RMSECV=0.762, MAECV=0.583) and the MLR model could describe the structural characteristics of inhibitors and interaction with hERG receptors. The validation of QSAR models was evaluated through the 5-fold cross-validation and Y-scrambling test.

Optimization by Helmhotz Machine-Based Learning of the Distribution of Search Points Using Helmholtz Machine (헬름홀츠 머신 기반의 탐색점 분포 학습에 의한 최적화)

  • 신수용;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.250-252
    • /
    • 2000
  • 많은 최적화 문제에서 해답들의 구조는 서로 의존성을 가지고 있다. 이러한 경우 기존의 진화연산이 사용하는 빌딩 블록 개념으로는 문제를 해결하는데 많은 어려움을 겪게 된다. 이를 극복하기 위해서 헬름홀츠 머신(Helmholtz machine)을 이용해서 데이터의 분포를 예측한 후 최적화를 수행하는 방법을 제안한다. 기존의 진화 연산을 바탕으로 하지만 교차연산이나 돌연변이 연산을 사용하는 대신에, 헬름홀츠 머신을 이용해서 데이터의 분포를 파악하고, 이를 이용해서 새로운 데이터를 생성하는 과정을 통해 최적화 과정을 수행한다. 진화연산으로 해결하는데 곤란을 겪고 있는 여러 함수들을 해결하는 이를 검증하였다.

  • PDF