• Title/Summary/Keyword: 교원질 합성

Search Result 37, Processing Time 0.025 seconds

The Effect of ${\Delta}^{12}PGJ2$ and $PPAR{\Gamma}$ Agonist on the Proliferation and Differentiation of Osteoblast ((${\Delta}^{12}PGJ_2$ 및 PPAR 감마 길항체가 조골세포의 증식 및 분화에 미치는 효과)

  • Heo, Jeong-Mi;Kim, Kyoung-Wha;Chung, Kyoung-Wook;Lee, Hye-Joon;Rhyu, In-Chul;Ku, Young;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.1
    • /
    • pp.133-152
    • /
    • 2005
  • 1. 목적 Prostaglandin은 치주질환과 관련된 국소적 골 대사에 중요한 역할을 한다. ${\Delta}^{12}PGJ_2$는 생체 내에서 혈장의 존재 하에 형성되는 천연 $PGD_2$ 대사산물이며 peroxisome- proliferator에 의해 활성화되는 감마 수용체 (PPAR ${\Gamma}$)에 대해 높은 친화성을 갖는 리간드로서 핵 수용체군에 속하는 전사조절인자이다. 이 연구의 목적은 골화 과정에서 ${\Delta}^{12}PGJ_2$의 역할을 규명하기 위해, 조골세포주의 증식과 분화에 미치는 영향과 그에 관련된 세포기전을 조사하는 데에 있다. 2. 방법 인간 골육종세포주인 Saos-2 (ATCC.HTB 85)와 쥐의 조골세포주 (MC3T3-E1)를 배양한 후 실험군에 농도가 각각 $10^{-5}$, $10^{-6}$, $10^{-7}$, $10^{-8}$, $10^{-9}$ 몰인 ${\Delta}^{12}PGJ_2$와 ciglitazone (합성 PPAR 감마 길항체)를 첨가하였다. 조골세포에서 PPAR 감마의 발현을 관찰하기 위해 역전사효소-중합효소연쇄반응(RT-PCR)을 특정한 primer를 이용하여 시행하였다. 세포 증식은 1일, 2일, 3 일째에 MIT 분석법으로 측정하였고, 2 일째에 알칼리성 인산효소 (ALPase) 생산을 측정하였다. 위의 결과에서 얻은 적정한 농도에서 다양한 조골세포 분화의 표지자들-제 1 형 교원질, 알칼리성 인산효소, osteopontin 및 bone sialoprotein-에 대한 간이 정량적 역전사효소-중합효소연쇄반응 (semiquantitative RT-PCR)을 실시하였으며 골결절 형성에 대한 효과를 알아보고자 석회화 분석도 시행하였다. 3. 결과 ${\Delta}^{12}PGJ_2$와 ciglitazone 모두 Saos-2 세포주의 증식을 촉진시켰다 .$10^{-8}$ 몰의 ${\Delta}^{12}PGJ_2$$10^{-6}$몰의 ciglitazone을 첨가한 실험군을 대조군과 비교했을 때, 시간에 비례하여 세포 증식률이 증가되었다. 알칼리성 인산효소의 활성화 검사에서도 증식률에서와 유사한 결과를 보여주었다. 간이 정량적 RT-PCR에서는 ${\Delta}^{12}PGJ_2$로 처리한 군의 경우 제 1 형 교원질, 알칼리성 인산효소, osteopontin, 그리고 bone sialoprotein의 상대적 mRNA 수준이 유의하게 높았다. 석회화 분석에서는 MC3T3-E1 세포를 $10^{-6}$ 몰의 ${\Delta}^{12}PGJ_2$로 처리한 군과 $10^{-5}$ 몰의 ciglitazone으로 처리한 군에서 현저한 골결절 형성을 보였다. 이러한 결과들은 ${\Delta}^{12}PGJ_2$가 유용한 골 유도물질이 될 수 있으며 또한 그 작용기전이 PPAR 감마-의존형 경로와 연관되어 있음을 보여준다.

The Effect of Azithromycin on the Cyclosporin-Ainduced Gingival Fibroblast Overgrowth (Azithromycin이 Cyclosporin-A에 의한 치은섬유아세포 과증식에 미치는 영향에 대한 in vitro 연구)

  • Noh, Hyuen-Soo;Chung, Won-Yoon;Cho, Seong-Ho;Cho, Kyoo-Sung;Park, Kwang-Kyun
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.4
    • /
    • pp.643-650
    • /
    • 2003
  • Cyclosporin-A(CsA)는 장기와 조직 이식에 따른 거부반응을 조절하기 위해 사용되는 면역억제제로, 이식의학의 발달과 더불어 사용량이 증가하고 있다. CsA의 부작용중의 하나인 치은과증식은 30-50%의 빈도로 발발하고 있다. 최근 macrolide 계열의 항생제인 azithromycin을 이용하여 이런 부작용을 억제시킨다는 임상 보고가 있어서, 이를 실험적으로 확인하고자 하였다. 이를 위해 CsA를 투여한 적이 없는 환자에서 정상 치은조직을 채취, 치은섬유아세포를 배양하였다. 우선 CsA에 대한 치은섬유아세포의 반응을 보기 위해 다양한 농도($10^{-8}-10^{-10}$g/ml)로 처치하여, 세포 증식량과 교원질 합성량을 MTT assay와 Sirol Collagen Assay를 이용하여 측정하였다. 이에 반응을 보인 조건과 세포를 대상으로 다양한 농도($10^{-8}-10^{-10}$g/ml)의 azithromycin을 CsA와 동시 처치하여 아래와 같은 결과를 얻었다. 1. CsA는 일부 치은섬유모세포의 증식을 증가시켰다. 그러나 Collagen 합성능에는 변화를 주지 않았다. 2. Azithromycin은 정상 치은섬유아세포의 증식능에 영향을 미치지 않았다. 3. Azithromycin은 CsA 에 반응을 보인 세포의 증식을 감소시켰으며, 이는 정상 수준과 유사하였다. 이상의 결과에서 azithromycin이 CsA에 의한 치은과증식 치료에 유익하다고 사료된다.

Electron Microscopic Study of Osseointegration between Bone and Smooth Machined Implants (선반가공 임플란트와 골조직의 유착에 관한 전자현미경적 연구)

  • Chang, Byung-Soo
    • Applied Microscopy
    • /
    • v.34 no.4
    • /
    • pp.277-283
    • /
    • 2004
  • This paper reports that the ultrastructural nature of the interface process between the implants and surrounding bone has been studied after in vivo 1, 4, 8, 12 weeks of implantation of smooth machined implants into rabbit tibias. There was no indication of the fibrous connective tissue formation around the implant that imply intolerance of the bone tissue towards the implant after 1 week of implantation. The regions showing direct bone tissue bonding to the smooth machined implant contained osteoblast activating across the interface in the direction after 4 weeks of implantation. The reaction of a smooth machined implant caused in the first instance formation of an amorphous woven bone, which transformed into a mineralized bone containing collagen fibers. After 8 weeks of implantation, the activities of osteoblast initiated osseointegration forming bone matrix at the interface. During this period, the osteoblast surrounded with a matrix consisting of collagen bundles running in various directions. In the interface area between newly formed bone tissue and implants which has been inserted in rabbit tibias for 12 weeks, the implant and mineralized bone was separated by an amorphous electron dense material layer about $1{\sim}1.5{\mu}m$ in thickness.

Effect of Transplantation of Bone Marrow Stromal Cells and Dermal Fibroblasts on Collagen Synthesis (골수기질세포와 진피섬유모세포의 이식이 교원질 합성에 미치는 영향)

  • Choi, Won Il;Han, Seung-Kyu;Lee, Byung Il;Kim, Woo Kyung
    • Archives of Plastic Surgery
    • /
    • v.34 no.2
    • /
    • pp.156-162
    • /
    • 2007
  • Purpose: In the previous in vitro studies the bone marrow stromal cells(BSCs) have shown the superior effect for wound healing activity than fibroblasts, which includes cell proliferation, type I collagen synthesis, and the production of bFGF, VEGF and TGF-${\beta}$ in chronic wound healing. The aim of this study is to compare the effects of BSCs and fibroblasts on wound healing activity in vivo, especially on collagen synthesis. Methods: The fibroblasts and BSCs were harvested from patients and cultured. The cultured cells were infiltrated into the pores of polyethylene discs. These discs were divided into three groups according to the mixed cells. In groups I, II and III the discs were loaded with no cells, fibroblasts and BSCs, respectively. Twelve discs per group(total 36 discs) were made for this study. After creating 6 pockets in the back of each rats, each discs was implanted into each pockets. At three time intervals from 1 to 3 weeks, the implanted discs were harvested for the histological and quantitative analysis. The amount of collagen produced was evaluated using ELISA. Statistical comparisons were made using the Mann-Whitney U-test. Results: There was great difference in the collagen synthesis among the three groups by the 1st and 2nd weeks. The BSC group showed highest collagen level, followed by fibroblast group and no cell group(p<0.05). The 3rd week specimens also showed greater collagen amount in BSC and fibroblast groups compared to those of no cell group(p<0.05). However, there was little difference between BSC and fibroblast groups. Conclusion: This result demonstrates that BSC has superior effect on stimulating wound healing than fibroblast, which is currently used for wound healing.

Variable Effect of Estrogen on Fibroblast Proliferation and Collagen Synthesis by Gender and Age (에스트로겐이 진피섬유아세포의 증식 및 교원질합성에 미치는 영향의 다양성)

  • Shin, Seung Han;Won, Chang Hoon;Han, Seung Kyu;Kim, Woo Kyung
    • Archives of Plastic Surgery
    • /
    • v.32 no.3
    • /
    • pp.363-368
    • /
    • 2005
  • It was assumed that the effect of estrogen on wound healing would be variable according to patient's gender and age since estrogen is a sex steroid. This study was designed to determine the variability of the effect of estrogen on proliferation of human dermal fibroblasts and collagen synthesis which are most important in wound healing considering patient's gender and age. Fibroblasts were isolated from the dermis of female patients in premenstrual, menstrual, or postmenopausal age group and that of male patients. The isolated fibroblasts were cultivated in the presence of estrogen($1.0{\mu}g/ml$). The cells were seeded at $5.0{\times}10^3cell/well$ in Dulbecco's Modified Eagle's Medium/Ham's F-12 nutrient including 5% fetal bovine serum in 96-well plates. The cells were incubated for 3 days. For fibroblast proliferation MTT assay method was used. To measure the production of collagen, the collagen type I carboxy- terminal propeptide enzyme immunoassay was carried out. Estrogen stimulated the proliferation of fibroblasts in female patients, but not in male patients. The greatest cell proliferation and collagen synthesis was seen at women in menstrual and postmenopausal age. These results demonstrated that effects of estrogen on dermal fibroblast proliferation and collagen synthesis were variable with gender and age.

Effect of Mulberry Extract Complex on Degenerative Arthritis In Vivo Models (In Vivo 실험모델에서 오디추출복합물의 퇴행성관절염 개선 효능 연구)

  • Li, Hua;Yun, Sat-Byul;Shin, So Hee;Jeong, Jong-Moon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.5
    • /
    • pp.634-641
    • /
    • 2016
  • The objective of this research was to investigate the in vivo effects of treatment with mulberry extract complex (MEC) on cartilage degeneration and pain severity in an experimental model of rat degenerative arthritis. Monosodium iodoacetate ($2mg/50{\mu}L$) was injected into right knee joints of rats, followed by administration of MEC for 8 weeks at 400 mg/kg or 800 mg/kg of body weight. The experimental data show that treatment with MEC inhibited degradation of glycosaminoglycan and collagen in cartilage. On the other hand, concentrations of cartilage oligomeric matrix protein, C-terminal telopeptide-2, matrix metalloproteinase (MMP)-2, MMP-9, and MMP-13 in serum decreased in comparison with the control. The MEC at all dose levels could inhibit formation of xylene-induced ear edema. In this study, MEC demonstrated significant anti-arthritis activity, which is required for improvement of degenerative arthritis. Based on these results, MEC may be employed for the development of new health foods to ease symptoms of degenerative arthritis.

The Effect of the Transforming Growth $Factor-{\beta}$ on Collagen Synthetic Activity of the Human Periodontal Ligament Cells and Human Gingival Fibroblasts (치주인대세포와 치은섬유아세포의 단백질과 교원질 합성능에 대한 Transforming Growth $Factor-{\beta}$의 효과)

  • Kim, Mi-Jeong;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.2
    • /
    • pp.429-447
    • /
    • 1996
  • Transforming growth factor $-{\beta}$ is one of the polypeptide growth factors that mediate the activity of mesenchymal cells and regulate wound healing process via cell proliferation, migration and extracellular matrix formation. The purposes of this study is to evaluate the effects of transforming growth factor $-{\beta}$ on the protein synthetic activity of human periodontal ligament cells and human gingival fibroblasts. The cells which were prepared were primary cultured gingival fibroblasts and periodontal ligament cells from humans, and the fourth or sixth subpassage were used in the experiments. Cells were seeded and at a confluent state, 0, 0.5, I, 2.5, 5, 10 ng/ml $TGF-{\beta}$ and $2{\mu]Ci/ml\;[^3H]$ proline were added to the cells and cultured for 24 hours. Then, 1 and 5 ng/ml concentrations were selected and added to confluent cells and cultured for 24 and 48 hours. They were labeled with $2{\mu}Ci/ml\;[^3H]$ proline for 24 hours and a collagen assay was done by the Peterkofsky and Diegelman method. The results were presented as the mean disintegration per minute (dpm) per well and S.D. of four determinations, The results were as follows. : The total protein, collagen and noncollagenous protein synthesis in periodontal ligament cells and gingival fibroblasts were increased dose- dependently by transforming growth factor-p to 2.5-5 ng/ml concentration and decreased at 10 ng/ml concentration. The percent of collagen was slightly changed according to the concentration of transforming growth factor-po The effect of transforming growth $factor-{\beta}$ was not specific for collagen synthesis since it increased the total, noncollagenous and collagenous protein, simultaneously. In the comparison of protein synthetic activity between the human periodontal ligament cells and human gingival fibroblasts, the human gingival fibroblasts had higher activities than the human periodontal ligament cells at all times and concentrations of $TGF-{\beta}$. In the comparison of protein synthetic activity between the 24 hour effect and the 48 hour effect of $TGF-{\beta}$, the 48 hour cultured cells' synthetic activity decreased more than the 24 hour cultured cells at human periodontal ligament cells and human gingival fibroblasts. In conclusion, $TGF-{\beta}$ has important roles in the stimulation of protein synthesis in human periodontal ligament cells and human gingival fibroblasts. Thus, it may be useful for clinical application in periodontal regenerative procedures.

  • PDF

Wound Healing Effect of Low Molecular PDRN on Experimental Surgical Excision Rat Model (저분자화된 Polydeoxynucleotide (PDRN)의 흰쥐에 대한 외과적 창상 치유 효과)

  • Yun, Jong-Kuk;Yoon, Hye-Eun;Park, Jeong-Kyu;Kim, Mi Ryeo;Kim, Dae-Ik
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.401-411
    • /
    • 2015
  • This study was performed to investigate the wound healing effect of skin regeneration cosmetics utilizing low molecular weight Polydeoxynucleotide (PDRN). High purity PDRN was prepared from salmon testes poly-deoxy-ribonucleotide through protein and toxin removal process and molecular weight reduction. In order to evaluate the wound healing effect of PDRN in SD rats, 4 sites of dorsal skin of each animal were excised by using biopsy punch and $500{\mu}L$ of test solution was topically applied once daily for 4 weeks. The tissue changes were observed for every week during the application periods. After applying the PDRN to the wound, the skin was cut flower and contraction of the wounds more quickly, and the coating of PDRN in the wound area was reduced significantly as compared to the positive control group $Fucidin^{(R)}$ applied. The microscopic observation of stained tissue showed that a positive control was most rapid in re-epithelialization ability followed by the PH group, PDRN group, HA group. In addition, transforming growth factor ($TGF-{\beta}$) and vascular endothelial growth factor (VEGF), such as in the growth factor was similar to the results of staining of tissue lesions. In conclusion, it is determined that the low molecular weight PDRN has the therapeutic effect to the wound, and could be used as a functional material of cosmetics and medical industries.

A STUDY ABOUT ALVEOLAR CREST BONE HEIGHT BEFORE AND AFTER ORTHODONTIC TREATMENT BY USING BITEWING FILM (교익사진을 이용한 교정치료 전후의 치조골 높이 변화에 관한 연구)

  • Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.27 no.3 s.62
    • /
    • pp.421-430
    • /
    • 1997
  • Alveolar bone grows with development of tooth germs and roots; bone deposition occurs with tooth eruption. Bone components undergoes processes of resorption and deposition, and when the balance between them is disrupted, decrease in alveolar bone height or excessive bone deposition result. It has been hon that repositioning of teeth through orthodontic treatment can cause alveolar bone resorption which result in decreased alveolar bone height, and there have been many studies to evaluate such effects. X-ray films that could be replicated and standardized were chosen in clinical studies, and among them, bitewing films were used for objective evaluation of changes in alveolar bone level. Twenty subjects, 10 to 13-year- old (average 12.2) children with Cl I molar key, healthy oral condition, no congenital missing, no periodontal disease, and pre-and post-orthodontic bitewing films, were randomly selected for comparison of alveolar bone heights. Amounts of tooth and changes in alveolar bone heights were analyzed. The following results were obtained: 1. Amount of tooth movement in canine, premolar, and molar regions, changes in tooth axis, and changes in alveolar bone heights were measured, and the mean and median values were obtained. 2. When pre-and post-orthodontic alveolar bone levels were compared, larger changes were noticed in maxilla than mandible. 3. When mesio-distally compared, larger changes were observed in the distal sides of 3D3 and 4M3, mesial sides of 4M3 and 4D3, distal sides of 4D3 and 5M3, mesial sides of 5M3 and 5D3, md distal sides of 5D3 and 6M3. 4. When the amounts of tooth movements(TX, TY)and changes in tooth axis(A) were compared,34TX, 34TY, 34A of both sides in maxilla were greater, iud changes in alveolar bone level were greater than any other region.

  • PDF

Effect of Serum Media on Fibroblast Proliferation and Collagen Synthesis (배양 혈청이 섬유아세포의 증식 및 교원질합성에 미치는 영향)

  • Lee, Min Ah;Seo, Sung Ig;Han, Seung Kyu;Kim, Woo Kyung
    • Archives of Plastic Surgery
    • /
    • v.32 no.4
    • /
    • pp.529-532
    • /
    • 2005
  • Expanding cells ex-vivo is very important in tissue-engineering. Culture medium is usually supplemented with fetal bovine serum(FBS) in most of the experiments. However, cells grown in bovine serum media may posses the possibilities of disseminating bovine diseases and/or stimulating the patient's immune reactions. To overcome these problems, autologous or homologous serum should be used instead of the FBS. The purpose of this study is to compare cell proliferation and collagen synthesis depending on the kind of sera mixed on media and to provide a guideline on applying established experimental data to clinical cases. Human dermal fibroblasts were obtained from four patients. Five thousand cells per well in 96-well plates were incubated DMEM/F-12 Nutrient with varying serum mixture; 10% autologous serum, 10% homologous serum, and 10% FBS. Five days after incubation fibroblast proliferation and collagen production were determined by MTT assay and CICP enzyme immunoassay. The mean cell number were; $3.95{\times}10^4/well$, $2.97{\times}10^4/well$ and $2.30{\times}10^4/well$, respectively. The average amounts of collagen synthesized were; 238.13 ng/ml, 204.88 ng/ml, and 163.88 ng/ml in each. These results show that the use of human serum mixture may contribute to, not only preventing disseminated infection of bovine diseases. but also increase cell proliferation and collagen synthesis without simulating the patient's immune reactions.