• Title/Summary/Keyword: 교수적 추론

Search Result 182, Processing Time 0.016 seconds

Evaluation on the Implementation of Girl Friendly Science Activity (여학생 친화적 과학활동 프로그램의 운영 평가)

  • Jhun, Young-Seok;Shin, Young-Joon
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.3
    • /
    • pp.442-458
    • /
    • 2004
  • This study was conducted to develop a plan for a large-scale implementation of the Girl Friendly Science Program based on the results of analysis and investigation of its current pilot implementation, Girl Friendly Science Program materials, which was first developed in 1999 with the support from Ministry of Gender Equality, consist of 1) five theme-based units that are specifically targeted individual students' unique ability, aptitude, and career choice, and 2) differentiated learning materials for 7th through 10th grade female students. All the materials are available at the homepage (http://tes.or.kr/gfsp.cgi) of 'Teachers for Exciting Science(the organization of science teachers in Seoul area)'. Since the materials are well organized by topic and grade level and presented in both Korean word process document and html format, anyone can easily access to the materials for their own instructional use. Ever since its launch the number of visitors to the homepage has been constantly increasing. The evaluation results of the current pilot implementation of the materials that targeted individual students' ability and aptitude showed that it scored high in terms of its alignment to the original purpose, content, level, and effectiveness to implement in classrooms. However, its evaluation scores were low in terms of the convenience for teachers to guide the materials, and its organization and operation. The results also showed a significant change in students' perception of science, and students' positive experiences of science through various interdisciplinary activities. On the other hand, the evaluation of students' experiences with the materials showed that students' assessment about an activity was largely depending on a success or failure of their experiences. Overall, students' evaluation of activities scores were low for simple activities such as cutting off or pasting papers. According to students' achievement test results, differences between pre and post test scores in the Affective Domain was statistically significant (p<0.05), but not in Inquiry Domain. Based on teachers observations, numerous schools where have run this program reported that students' abilities to cooperate, discuss, observe and reason with evidences were improved. In order to implement this program in a larger scale, it is critical to have a strong support of teachers and induce them to change their teaching strategy through building a community of teachers and developing ongoing teacher professional development programs. Finally, there still remain strong needs to develop more programs, and actively discover and train more domestic woman scientists and engineers and collaborate with them to develop more educational materials for girls in all ages.

Composition of Curriculums and Textbooks for Speed-Related Units in Elementary School (초등학교에서 속력 관련 단원의 교육과정 및 교과서 내용 구성에 관한 논의)

  • Jhun, Youngseok
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.4
    • /
    • pp.658-672
    • /
    • 2022
  • The unique teaching and learning difficulties of speed-related units in elementary school science are mainly due to the student's lack of mathematical thinking ability and procedural knowledge on speed measurement, and curriculums and textbooks must be constructed with these in mind. To identify the implications of composing a new science curriculum and relevant textbooks, this study reviewed the structure and contents of the speed-related units of three curriculums from the 2007 revised curriculum to the 2015 revised curriculum and the resulting textbooks and examined their relevance in light of the literature. Results showed that the current content carries the risk of making students calculate only the speed of an object through a mechanical algorithm by memorization rather than grasp the multifaceted relation between traveled distance, duration time, and speed. Findings also highlighted the need to reorganize the curriculum and textbooks to offer students the opportunity to learn the meaning of speed step-by-step by visualizing materials such as double number lines and dealing with simple numbers that are easy to calculate and understand intuitively. In addition, this paper discussed the urgency of improving inquiry performance such as process skills by observing and measuring an actual object's movement, displaying it as a graph, and interpreting it rather than conducting data interpretation through investigation. Lastly, although the current curriculum and textbooks emphasize the connection with daily life in their application aspects, they also deal with dynamics-related content somewhat differently from kinematics, which is the main learning content of the unit. Hence, it is necessary to reorganize the contents focusing on cases related to speed so that students can grasp the concept of speed and use it in their everyday lives. With regard to the new curriculum and textbooks, this study proposes that students be provided the opportunity to systematically and deeply study core topics rather than exclude content that is difficult to learn and challenging to teach so that students realize the value of science and enjoy learning it.