• Title/Summary/Keyword: 교량 설계 지침

Search Result 45, Processing Time 0.023 seconds

Measurement and Proposed Design Specification of Temperature Distribution in the Concrete Pylon (콘크리트 주탑의 온도분포 계측 및 설계규정 제안)

  • Hwang, Eui-Seung;Shim, Jae-Soo;Kim, Do-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • This paper deals with monitoring and analysis of temperature measurement data in concrete pylon of long span cable bridges. During the construction of Geoga Bridge in Busan-Geoje Fixed Link Project, temperature sensors were installed in several sections of hollow box type concrete pylon and temperatures along the depth of the four sides of the section have been recorded along with ambient temperature. Effects of temperature distribution on the pylon are analysed using actual measured data and results are compared with the design guideline. It was found that the temperature load model for concrete girder can be applied to box type concrete pylon. Structural analysis of the pylon due to variation of temperature distribution during the construction is performed using 3D modelling and FE program and the maximum displacements of east-west and north-south side were calculated as 0.056m and 0.121m, respectively.

An Experimental Study on the Joints in Ultra High Performance Precast Concrete Segmental Bridges (초고성능 프리캐스트 콘크리트 세그멘탈 교량 접합부에 대한 실험 연구)

  • Lee, Chang-Hong;Chin, Won-Jong;Choi, Eun-Suk;Kim, Young-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.235-244
    • /
    • 2011
  • Failures of segmental bridges have been attributed to the inadequate joint connection techniques, which led to corrosion of the post-tensioned tendons connecting the segmental joints. The principal objective of this study is to evaluate the performances of the in-situ cast joint and epoxy applied shear key joints as a function of shear and ultimate strengths. Furthermore, shear behavior and strength of shear key joints in ultra high performance precasted concrete segmental bridges are experimentally evaluated to understand its shear failure behavior. The test parameters of shear key shape and type, load-displacement relations, cracking behavior, concrete strength, and fracture modes are considered in the study. Also, several parameters which influence the mechanical behavior of the shear key joint are analyzed. Based on the study results, the optimal shear key shape and joint type are proposed for the joint design and analysis guidelines.

A Feasibility Study of Loading Test for Safety Assessment : Concrete Bridges (재하시험 수행에 관한 적정성 연구 : 콘크리트 교량)

  • Hwang, Jin Ha;An, Seoung Su;Kim, Ju Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.147-155
    • /
    • 2011
  • The bridges where serious damages, defects, material degradations, etc. are not found can be presumed to have enough safety for the specified design loads, nevertheless, in many cases the loading carrying capacity is rated through loading tests. The safety specifications and manuals get no further than qualitative instructions for performing loading test or not. Some studies presented the improved appraisal methods for determining the load carrying capacity; however, the feasibility studies for loading test are scarcely carried out. This study examines an existing question, whether the loading tests are necessarily required in the safety assessment or not, and suggests an alternative for that via a statistical analysis for dozens of condition evaluation reports for concrete bridges.

Unsupervised Vortex-induced Vibration Detection Using Data Synthesis (합성데이터를 이용한 비지도학습 기반 실시간 와류진동 탐지모델)

  • Sunho Lee;Sunjoong Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.315-321
    • /
    • 2023
  • Long-span bridges are flexible structures with low natural frequencies and damping ratios, making them susceptible to vibrational serviceability problems. However, the current design guideline of South Korea assumes a uniform threshold of wind speed or vibrational amplitude to assess the occurrence of harmful vibrations, potentially overlooking the complex vibrational patterns observed in long-span bridges. In this study, we propose a pointwise vortex-induced vibration (VIV) detection method using a deep-learning-based signalsegmentation model. Departing from conventional supervised methods of data acquisition and manual labeling, we synthesize training data by generating sinusoidal waves with an envelope to accurately represent VIV. A Fourier synchrosqueezed transform is leveraged to extract time-frequency features, which serve as input data for training a bidirectional long short-term memory model. The effectiveness of the model trained on synthetic VIV data is demonstrated through a comparison with its counterpart trained on manually labeled real datasets from an actual cable-supported bridge.

알루미늄 재료기술( II )

  • 황창규
    • Journal of the KSME
    • /
    • v.29 no.2
    • /
    • pp.162-168
    • /
    • 1989
  • 철이나 동은 BC5000~3000년부터 도구류, 장식품 등으로 인류의 역사에 등장하고 있는데 반해 알루미늄 재료는 공업용 재료로써의 기초가 확립된 후 아직 100년이 채 못되고 있지만 건종 성 질이 우수하기 때문에 이러한 특성을 이용해서 항공기용 재료, 전선, 기물, 일반프레스 가공품, 제메이스류, 일반 기계부품, 콘덴서용 및 포장용 상자, 도료 및 잉크 원료 화포 재료, 환원재용 분말, 차량, 건축용 재료 등에 사용되고 있고 이용도는 제 2차대전후에 건축, 차량, 조선, 채광, 교량, 화학, 섬유식품 공예 등과 같은 공업분야에 널리 새로운 용도로 개척이 되어 응용이 되고 있다. 이와 같이 그 용도 분야가 다양화되고 적으로도 철, 다음가는 금속재료로 성장하고 있기 때문에 "알루미늄 재료 기술"이라는 이름으로 각종 자료들을 정리 하다보니 너무나도 그 범위가 광범위하여 본 글에서 제외된 알루미늄 재료의 성분, 선정, 지침, 물리. 화학. 기계성질, 형상과 그의 제작범위, 구조설계, 절삭가공, 접합, 표면처리, 단조 등에 대한 여러 가지 자료는 지면관 계로 별도로 정리를 해서 다음 기회에 소개하고자 한다. 소개하고자 한다.

  • PDF

An Experimental Study on Dynamic Behavior Evaluation of Transitional Track (접속부 궤도의 동적거동분석을 위한 실험적 연구)

  • Cho, Sung-Jung;Choi, Jung-Youl;Chun, Dae-Sung;Kim, Man-Cheol;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1379-1385
    • /
    • 2007
  • In domestic transitional zone design, there is regulation to prevent generation of irregular substructure behaviors that negatively influence in prevention of plasticity settlement on approach section and contact section as well as relieve overall track rigidity by reducing sectional foundation and track stiffness difference, but design guideline that considers dynamic behavior of transitional track in actual service line is very insignificant. Therefore in this study, characteristics of transitional track dynamic behaviors by substructure stiffness are researched and measured dynamic response of transitional track by substructure stiffness in order to prove correlation between substructure and track and calculate elasticity(stiffness) and track load of transitional track by using measurement and formula to provide basic information for developing design guideline considering dynamic behavior of service line transitional track.

  • PDF

Fatigue Behavior of Steel-Concrete Composite Bridge Deck with Perfobond Rib Shear Connector (유공판재형 전단연결재를 갖는 강-콘크리트 합성바닥판의 피로거동에 관한 연구)

  • Kyung, Kab Soo;Lee, Seung Yong;Jeong, Youn Ju;Kwon, Soon Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.71-80
    • /
    • 2010
  • Bridge deck is directly influenced by environment and vehicle load, it is easily damaged so that it requires an appropriate repair and retrofit. Therefore, developing a bridge deck with high durability is necessary in order to minimize the maintenance of bridge deck and use it to its design life. In this study, static test was carried out to evaluate a fatigue capacity of steel-concrete composite deck, which was newly developed by supplementing problems of existing reinforced concrete deck. Based on results from the static test, fatigue load was decided, and fatigue test was conducted under the constant amplitude repeated load. From the fatigue tests, the S-N curve regarding principle structural details of composite deck was made, and characteristics of fatigue behavior was estimated by comparing and evaluating it with fatigue design criteria. In addition, fatigue design guideline was presented. As a result, it is found that each structural details of composite deck proposed by this study, such as upper flange of corrugated steel plate and middle section of it, shear connector and lower flange of corrugated steel plate, is satisfying the fatigue strength.

Development of the Approximate Cost Estimating Model for PSC Box Girder Bridge based on the Breakdown of Standard Work (대표공종 기반의 PSC Box 교량 상부공사 개략공사비 산정모델에 관한 연구)

  • Kim, Sang-Bum;Cho, Ji-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.791-800
    • /
    • 2013
  • Needs for developing a better way of cost estimating process for public construction projects have been widely recognized. Those needs are mainly from the early phases of the project through the construction life cycle due to the its importance to the control process. In contrast to the traditional estimating method based on unit-price references, this research utilized this following process. The first step is analyzing the real cost data from actual cost activities (2000~2010) about the statement of P.S.C(Prestressed Concrete) Box Girder Bridge. The collected data was broken into four categories based on technical construction methods such as I.L.M(Incremental Launching Method), M.S.S(Movable Scaffolding System), F.S.M(Full Staging Method), and F.C.M(Free Cantilever Method). The second, actual design documents including the actual cost estimating documents, drawings and specifications were carefully reviewed to cluster the cost itemized statement from four categories. It was also attempted to seek the proper breakdown of standard works that are responsible for more than 95 percentage in each categories in terms of its cost. The third, this research comes up the index for standard unit materials and unit price of standard work and develops the approximate estimating model applying for the specification(length and breadth of bridges) per square area that the user takes as well as suggests the practical application plan within the original time alloted.

Evaluation of Wake Galloping for Inclined Parallel Cables by Two-Dimensional Wind Testes Tests (2차원 풍동실험을 통한 평행 경사 실린더의 웨이크 갤로핑 평가)

  • Kim, Sun-Joong;Kim, Ho-Kyung;Lee, Sang-Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.763-775
    • /
    • 2011
  • The wake galloping phenomenon is evaluated for two cylinders via two-dimensional wind tunnel tests. The two cylinders are deployed parallel to the inclination of the vertical plane, which simulates the inclined stay cables of a cable-stayed bridge. The upstream and downstream displacements of the cylinder are observed with varying center distances between the two cylinders. The effect of structural damping on the mitigation of wake galloping is also investigated. The amplitude of the vibration is very sensitive to center distance between the two cylinders. The maximum amplitudes exceededthe allowable limit of the design guidelines for small center distances of less than or equal to six times the diameter of the cylinder. The overall results conformedto the conventional design practice for the wake galloping of parallel cables. It was found, however, that the increase in the damping was not effective in reducing the amplitude of the vibration in the wake galloping phenomenon.

Local Bond Stress-Slip Model of GFRP Rebars (GFRP 보강근의 부착응력-미끄럼 모델)

  • Cheong, Yeon-Geol;Yi, Chong-Ku;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.133-136
    • /
    • 2008
  • The cost of repairing the deterioration of concrete structures due to corrosion of the reinforcement steel has been the prominent figure in the maintenacne of the reinforced-concrete infrastructures. As an alternative material to steel reinforcement, the use of Glass Fiber Reinforced Polymer (GFRP) bar in concrete is being actively studied for the high resistance of chemical environment and high strength to weight ratio properties of GFRP. However, there remain various aspects of GFRP properties that still need to be studied before the standard design criteria can be established. One of the imminent issues is the bond between GFRP and concrete. In this study, the bond-behavior of GFRP bars in concrete is investigated via the pullout test with varying parameters: surface condition of GFRP bars and concrete compression strength. And the local bond-stress model of GFRP rabars with applying monotonc load was also derived from the present test.

  • PDF