• Title/Summary/Keyword: 교량 거더

Search Result 448, Processing Time 0.022 seconds

Seismic Response Evaluation of PSCI Girder Bridges Considering Stiffness Variation in Elastic Bearings (탄성받침의 강성 변동을 고려한 PSCI 거더 교량의 지진 응답 평가)

  • Yoon, Hyejin;Cho, Chang-Beck;Kim, Young-Jin;Kang, Jun Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.187-192
    • /
    • 2023
  • An elastic bearing must be strong against vertical loads and flexible against horizontal loads. However, due to the material characteristics of rubber, it may show variability due to the manufacturing process and environmental factors. If the value applied in the bridge design stage and the actual measured value have different values or if the performance during operation changes, the performance required in the design stage may not be achieved. In this paper, the seismic response of bridges was compared and analyzed by assuming a case where quality deviation occurs during construction compared to the design value for elastic bearings, which have not only always served as traditional bearings but also have had many applications in recent seismic reinforcement. The bearing's vertical stiffness and shear stiffness deviation were considered separately for the quality deviation. In order to investigate the seismic response, a time history analysis was performed using artificial seismic waves. The results confirmed that the change in the bearing's shear stiffness affects the natural period and response of the structure.

Stud and Puzzle-Strip Shear Connector for Composite Beam of UHPC Deck and Inverted-T Steel Girder (초고성능 콘크리트 바닥판과 역T형 강거더의 합성보를 위한 스터드 및 퍼즐스트립 전단연결재에 관한 연구)

  • Lee, Kyoung-Chan;Joh, Changbin;Choi, Eun-Suk;Kim, Jee-Sang
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.151-157
    • /
    • 2014
  • Since recently developed Ultra-High-Performance-Concrete (UHPC) provides very high strength, stiffness, and durability, many studies have been made on the application of the UHPC to bridge decks. Due to high strength and stiffness of UHPC bridge deck, the structural contribution of top flange of steel girder composite to UHPC deck would be much lower than that of conventional concrete deck. At this point of view, this study proposes a inverted-T shaped steel girder composite to UHPC deck. This girder requires a new type of shear connector because conventional shear connectors are welded on top flange. This study also proposes three different types of shear connectors, and evaluate their ultimate strength via push-out static test. The first one is a stud shear connector welded directly to the web of the girder in the transverse direction. The second one is a puzzle-strip type shear connector developed by the European Commission, and the last one is the combination of the stud and the puzzle-strip shear connectors. Experimental results showed that the ultimate strength of the transverse stud was 26% larger than that given in the AASHTO LRFD Bridge Design Specifications, but a splitting crack observed in the UHPC deck was so severe that another measure needs to be developed to prevent the splitting crack. The ultimate strength of the puzzle-strip specimen was 40% larger than that evaluated by the equation of European Commission. The specimens combined with stud and puzzle-strip shear connectors provided less strength than arithmetical sum of those. Based on the experimental observations, there appears to be no advantage of combining transverse stud and puzzle-strip shear connectors.

Transformation of Text Contents of Engineering Documents into an XML Document by using a Technique of Document Structure Extraction (문서구조 추출기법을 이용한 엔지니어링 문서 텍스트 정보의 XML 변환)

  • Lee, Sang-Ho;Park, Junwon;Park, Sang Il;Kim, Bong-Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6D
    • /
    • pp.849-856
    • /
    • 2011
  • This paper proposes a method for transforming unstructured text contents of engineering documents, which have complex hierarchical structure of subtitles with various heading symbols, into a semi-structured XML document according to the hierarchical subtitle structure. In order to extract the hierarchical structure from plain text information, this study employed a method of document structure extraction which is an analysis technique of the document structure. In addition, a method for processing enumerative text contents was developed to increase overall accuracy during extraction of the subtitles and construction of a hierarchical subtitle structure. An application module was developed based on the proposed method, and the performance of the module was evaluated with 40 test documents containing structural calculation records of bridges. The first test group of 20 documents related to the superstructure of steel girder bridges as applied in a previous study and they were used to verify the enhanced performance of the proposed method. The test results show that the new module guarantees an increase in accuracy and reliability in comparison with the test results of the previous study. The remaining 20 test documents were used to evaluate the applicability of the method. The final mean value of accuracy exceeded 99%, and the standard deviation was 1.52. The final results demonstrate that the proposed method can be applied to diverse heading symbols in various types of engineering documents to represent the hierarchical subtitle structure in a semi-structured XML document.

Development of Macro-Element for the Analysis of Elastically Supported Plates (탄성 지지된 판구조 해석을 위한 매크로 요소의 개발)

  • 강영종;박남회;앙기재;최진유
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.25-35
    • /
    • 2000
  • The superstructure of general bridge like slab bridge and slab on girder bridge is composed of elastically supported isotropic plate. The objective of this study is to develop the new analysis method for elastically supported plate with general edge beam or girder(boundaries) under arbitrary out of plane loading. The displacement solutions for the macro-element of plate and beam are obtained by solving for the unknown interactive forces and moments at the beam or nodal line locations after satisfying equilibrium equation along the nodal line. The displacement functions for macro-elements ate proposed in single Fourier series using harmonic analysis, and the equilibrium equations of nodal line are composed by using slope-deflection method. The proposed analysis method is programmed by MS-Fortran and can be applied to all types of isotropic decks with bridge-type boundaries. Numerical examples involving elastically supported plates with various aspect ratio, loading cases, and bridge-type boundary conditions are presented to demonstrate the accuracy of this program. The major advantage of this new analysis method is the development of a simple solution algorithm, leads to obtain rapidly responses of bridge deck system. This proposed method can be used in parametric study of behavior of bridge decks.

  • PDF

Live Load Distribution in Prestressed Concrete I-Girder Bridges (I형 프리스트레스트 콘크리트 거더교의 활하중 분배)

  • Lee, Hwan-Woo;Kim, Kwang-Yang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.325-334
    • /
    • 2008
  • The standard prestressed concrete I-girder bridge (PSC I-girder bridge) is one of the most prevalent types for small and medium bridges in Korea. When determining the member forces in a section to assess the safety of girder in this type of bridge, the general practice is to use the simplified practical equations or the live load distribution factors proposed in design standards rather than the precise analysis through the finite element method or so. Meanwhile, the live load distribution factors currently used in Korean design practice are just a reflection of overseas research results or design standards without alterations. Therefore, it is necessary to develop an equation of the live load distribution factors fit for the design conditions of Korea, considering the standardized section of standard PSC I-girder bridges and the design strength of concrete. In this study, to develop an equation of the live load distribution factors, a parametric analysis and sensitivity analysis were carried out on the parameters such as width of bridge, span length, girder spacing, width of traffic lane, etc. As a result, the major variables to determine the size of distribution factors were girder spacing, overhang length and span length in case of external girders. For internal adjacent girders, the determinant factors were girder spacing, overhang length, span length and width of bridge. For internal girders, the factors were girder spacing, width of bridge and span length. Then, an equation of live load distribution factors was developed through the multiple linear regression analysis on the results of parametric analysis. When the actual practice engineers design a bridge with the equation of live load distribution factors developed here, they will determine the design of member forces ensuring the appropriate safety rate more easily. Moreover, in the preliminary design, this model is expected to save much time for the repetitive design to improve the structural efficiency of PSC I-girder bridges.

Vertical Temperature Difference of Steel Box Girder Bridge Considering Asphalt Thickness of Concrete Deck (콘크리트 바닥판의 아스팔트 두께에 따른 강박스거더교의 상하 온도차)

  • Lee, Seong-Haeng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.602-608
    • /
    • 2019
  • The purpose of this study was to calculate the temperature difference of the sectional elevation according to the asphalt thickness of the steel box girder bridge deck and provide data on the design basis accordingly. Asphalt thicknesses produced four steel box girder model specimens of 0mm, 50mm, 100m and 150mm. In each model, 17 to 23 temperature sensors were attached to upper concrete and steel box girders. Six temperature gauges were selected to compare the temperature difference with Euro codes. The maximum and lowest temperature were calculated at the reference atmospheric temperature of each model, and the temperature difference (slope) was calculated based on this calculation. Four models of temperature difference are presented at each model. The 0mm to 100mm temperature difference models showed a -0.9 to -1.5 degree lower temperature difference compared to the temperature difference of Euro codes at the top of the slab. Overall, the measured temperature difference was found to be between 5.45% and 8.33% compared to the Euro code. The standard error coefficient, which was calculated by multiplying the average temperature with the standard error, was calculated from a range of 2.50 to 2.51 times the average at the top and bottom. It is estimated that the proposed temperature difference model can be used as a basic data when calculating temperature difference criteria for bridges in Korea.

Effects of Lateral Bracing on the Load Distribution and Torsional Behaviors in Continuous Two-Girder Bridges (연속 2-거더교에서 수평브레이싱이 하중 분배 및 비틂 거동에 미치는 영향)

  • Hwang, Min Oh;Yoon, Tae Yang;Park, Yong Myung;Joe, Woom Do Ji;Hwang, Soon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.671-680
    • /
    • 2007
  • In this study, we performed a loading test to evaluate the effect of load distribution on continuous two-span plate-girder bridges with or without bottom lateral bracing using one-fifth-scale bridge specimens. From the test results, when specimens with lateral bracing were loaded eccentrically, the load distribution capacity of the concrete deck and cross beam improved and greater loading was distributed to the other side of the girder subjected to loading. The load distribution rate of the specimens with and without lateral bracing system was evaluated from the analytical model that was verified by the test results. From the result of the quantitative evaluation, when specimen without lateral bracing was loaded eccentrically, mostly 21% of loading according to the concrete deck was distributed to the other side of the girder subjected to loading. However, when specimen with lateral bracing was loaded eccentrically, the load distribution rate increased by 1.7 times as all cross beams, bracing and concrete deck participated in load distribution. The reason is that the torsional rigidity increased as the model with lateral bracing behaved like a pseudo-closed box section.

Evaluation of Static and Fatigue Performances of Decks Reinforced with GFRP Rebar for Reinfocement Ratio (GFRP 보강근으로 보강된 바닥판의 보강비에 따른 정적 및 피로성능 평가)

  • You, Young-Jun;Park, Young-Hwan;Choi, Ji-Hun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.491-497
    • /
    • 2014
  • The corrosion of steel reinforcement in reinforced concrete bridge decks significantly affects the degradation of the capacity. Due to the advantageous characteristics such as high tensile strength and non-corrosive property, fiber reinforced polymer (FRP) has been gathering much interest from designers and engineers for possible usage as a alternative reinforcement for a steel reinforcing bar. However, its application has not been widespread, because there data for short- and long-term performance data of FRP reinforced concrete members are insufficient. In this paper, seven full-scale decks with dimensions of $4000{\times}3000{\times}240mm$ were prepared and tested to failure in the laboratory. The test parameter was the bottom reinforcement ratio in transverse direction. The decks were subjected to various levels of concentrated cyclic load with a contact area of $577{\times}231mm$ to simulate the vehicle loading of DB-24 truck wheel loads acting on the center span of the deck. It was observed that the glass FRP (GFRP) reinforced deck on a restraint girder is strongly effected to the level of the applied load rather than the bottom reinforcement ratio. The study results showed that the maximum load less than 58% of the maximum static load can be applied to the deck to resist a fatigue load of 2 million cycles. The fatigue life of the GFRP decks from this study showed the lower and higher fatigue performance than that of ordinary steel and CFRP rebar reinforced concrete deck. respectively.

Anlysis of the Environmental Load Impact Factors for IPC Girder Bridge Using Principal Component Anlysis (주성분 분석을 활용한 IPC 거더교의 환경부하량 영향요인 분석)

  • Kim, Joon-Soo;Jeon, Jin-Gu;Kim, Byung-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.6
    • /
    • pp.46-54
    • /
    • 2018
  • In the 21st century, the Earth has continued its efforts to reduce carbon emissions to overcome the crisis caused by climate change. The construction industry, which is a representative industry that produces large amounts of the environmental load during construction, should actively reduce the amount of the environmental load. From the planning stage of the construction facility, it is necessary to consider the environmental load such as route selection and structure type selection to reduce the environmental load. However, the environmental load can be estimated based on the input resource amount. However, in the planning stage, it is difficult to accurately calculate the environmental load due to lack of information on the construction amount. The purpose of this study is to select the environmental load factors for IPC girder bridges to be used in the environmental load estimation model in the planning stage. Specific information related to the environmental load was selected from a list of information available in the planning stage, reflecting the Life Cycle Assessment(LCA), correlation, principal components analysis and expert opinion. The list of selected planning stage information is 10 such as span length and bridge extension, and it is expected to be used as a basic data for the future development of environmental load estimation model.

Static Behavior of Stud Shear Connector for UHPC Deck (초고성능 콘크리트 바닥판을 위한 스터드 전단연결재의 정적 거동)

  • Lee, Kyoung-Chan;Kwark, Jong-Won;Park, Sang-Hyeok;Kim, Jee-Sang
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.573-579
    • /
    • 2014
  • Typical composite girder has been composed with conventional concrete deck and steel girder. Recently, ultrahigh-performance-concrete (UHPC) deck is proposed in order to enhance durability and reduce weight of deck as well as to increase stiffness and strength of the composite girder. This study investigates that a headed stud is still compatible as a shear connector for the UHPC deck and steel girder composite beam. Twelve push-out specimens are prepared to evaluate the static strength of stud shear connectors embedded in the UHPC deck. The test program proves that the static strength of the stud shear connectors embedded in UHPC well meets with design codes described in AASHTO LRFD. Chosen experimental variables are aspect ratio of height to diameter of stud, thickness of deck and thickness of concrete cover over the head of stud. From the test program, aspect ratio and cover thickness are investigated to mitigate the regulations of the existing design codes. The minimum aspect ratio and the minimum cover thickness given in AASHTO LRFD are four and 50mm, respectively. This limitation hinders to lower the thickness of the UHPC deck. The results of the experiment program give that the aspect ratio and the cover thickness can be lower down to three and 25mm, respectively. Eurocode-4 regulates characteristic relative slip at least 6mm. However, test results show that stud shear connectors embedded in UHPC provide the characteristic relative slip only about 4mm. Therefore, another measures to increase ductility of stud should be prepared.