• Title/Summary/Keyword: 광 경화수지

Search Result 28, Processing Time 0.018 seconds

Synthesis and Characterization of Photosensitive Polyimides Containing Alicyclic Structure (지방족고리 구조를 함유하는 감광성 폴리이미드 수지의 합성 및 특성 평가)

  • 심종천;최성묵;심현보;권수한;이미혜
    • Polymer(Korea)
    • /
    • v.28 no.6
    • /
    • pp.494-501
    • /
    • 2004
  • A new alkali developable photosensitive poly(amic acid) (PAA-0) with transmittance at 400 nm was synthesized from cyclobutane-1,2,3,4-tetracarboxylic dianhydride, 2-(methacryloyloxy)ethyl-3,5-diamino-benzoate and 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyl disiloxane in N-methyl-2-pyrrolidinone. Photosensitivity of the PAA-0 was investigated at 365-400 nm in the presence of a photoinitiator using a high pressure mercury lamp. The photo-cured poly(amic acid) was insoluble toward aqueous 2.38 wt% tetramethylammonium hydroxide solution. Negative pattern of the PAA-0 with 25 ${\mu}{\textrm}{m}$ resolution was obtained by developing with 2.38 wt% tetramethylammonium hydroxide solution after exposure of 600 mJ/$\textrm{cm}^2$ in the presence of 2,2-dimethoxy-2-phenyl-acetophenone as a photoinitiator. The patterned poly(amic acid) was converted to polyimide by thermal curing at 25$0^{\circ}C$ for 50 min, which showed chemical resistance against photoresist stripper as well as good transmittance at 400 nm.

Development of micro-stereolithography system for the fabrication of three-dimensional micro-structures (3 차원 형상의 미소제품 제작을 위한 마이크로 광 조형시스템의 개발)

  • 이인환;조윤형;조동우;이응숙
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.186-194
    • /
    • 2004
  • Micro-stereolithography is a newly proposed technology as a means that can fabricate a 3D micro-structure of free form. It makes a 3D micro-structure by dividing the shape into many slices of relevant thickness along horizontal surfaces, hardening each layer of slice with a focused laser beam, and stacking them up to a desired shape. In this technology, differently from the conventional stereolithography, scale effect is dominant. To realize micro-stereolithography technology, we developed the micro-stereolithography apparatus which is composed of an Ar+ laser, x-y-z stages. controllers. optical devices and scan path generation software. Related processes were developed, too. Using the system, a number of micro-structures were successfully fabricated. Some of these samples are shown for prove this system. Laser scan path generation algorithm and software considering photopolymer solidification phenomena as well as given 3D model were developed. Sample fabrication of developed software shows relatively high dimensional accuracy compared to the uncompensated result.

Prediction of Photopolymer Solidification for Inclined Laser Beam Exposure (레이저 빛의 경사노광 시 광 경화성 수지의 경화형상 예측)

  • Kim, Young-Hyun;Lim, Jong-Seon;Yu, Gyu-Sang;Lee, In-Hwan;Ko, Tae-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.98-104
    • /
    • 2010
  • It has been reported that the photopolymer solidification in the stereolithogrpahy process is mainly depend on the laser exposure conditions such as laser power and scanning speed. However, these researches were focused on the vertical laser exposure onto the surface of the photopolymer. In this research, we developed a mathematical model for the photopolymer solidification under the inclined laser beam exposure. Using the developed mathematical model, the photopolymer solidifications were simulated varying inclined laser exposure conditions. Developed mathematical model was in good agreement with the experimental result. This research can be applied to improve the surface roughness in the stereolithogrpahy process.

Preparation and Characterization of Polyurethane/Organoclay Nanocomposites by UV Curing (UV경화에 의한 폴리우레탄/유기화클레이 나노복합재료 제조와 물성 연구)

  • Shin, Geumsig;Chang, Young-Wook;Kim, Seong Woo
    • Journal of Adhesion and Interface
    • /
    • v.13 no.4
    • /
    • pp.156-162
    • /
    • 2012
  • Polyurethane (PU)/organoclay nanocomposites were prepared by mixing UV curable urethane acrylate oligomer with organoclay, and a subsequent curing by UV irradiation. As organoclays, commercially available Cloisite 20A (C20A) and acrylsilane modified C20A were used. XRD and TEM analyses revealed that the UV cured PU/clay nanocomposites formed intercalated nanocomposites, and acrylsilane modified C20A are dispersed more finely than unmodified C20A in PU matrix. DMTA, pencil hardness and adhesion test onto PET substrate showed that the clay nanolayers induced an increase in the properties, and the enhancement in the properties was more pronounced in the PU/acrylsilane modified C20A nanocomposites than in the PU/unmodified C20A nanocomposites. It was also observed that the PU/surface modified clay nanocomposites showed remarkably lower shrinkage upon UV curing than the unfilled PU. The nanocomposites showed excellent optical transparency but lower gloss as compared to unfilled PU.

Preparation and Properties of Coating Materials of Polydimethylsiloxane with Acrylate Groups (Acrylate기를 갖는 Polydimethylsiloxane계 코팅 액의 제조와 그 특성)

  • Bak, Seung Woo;Kang, Ho Jong;Kang, Doo Whan
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.138-143
    • /
    • 2014
  • ${\alpha},{\omega}$-Hydroxypropyl polydimethylsiloxane (HO-PDMS) was prepared by hydrosilylation of hydrogen terminated polydimethylsiloxane with allyl alcohol. Polydimethylsiloxane modified urethane with isocyanate group (PSU) was prepared from cyclic trimer of hexamethylenediisocyanate with HO-PDMS. PDMS modified urethane base resin with acrylic group (PSUA) was prepared from the urethane reaction of PSU with isocyanate group and 2-hydroxyethylmethacrylate. Their structures were characterized using FTIR and NMR. Coating materials were prepared by mixing PSUA, acrylic hardner, photo-initiator, and solvent and coated on PET film to obtain flexible and hard coating film by UV irradiation. Transparency of coating film was 89.7%, contact angle, $88^{\circ}$, and pencil hardness, 3H.

Development of Rapid Mask Fabrication Technology for Micro-abrasive Jet Machining (미세입자 분사가공을 위한 쾌속 마스크 제작기술의 개발)

  • Lee, Seung-Pyo;Ko, Tae-Jo;Kang, Hyun-Wook;Cho, Dong-Woo;Lee, In-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.138-144
    • /
    • 2008
  • Micro-machining of a brittle material such as glass, silicon, etc., is important in micro fabrication. Particularly, micro-abrasive jet machining (${\mu}-AJM$) has become a useful technique for micro-machining of such materials. The ${\mu}-AJM$ process is mainly based on the erosion of a mask which protects brittle substrate against high velocity of micro-particle. Therefore, fabrication of an adequate mask is very important. Generally, for the fabrication of a mask in the ${\mu}-AJM$ process, a photomask based on the semi-conductor fabrication process was used. In this research a rapid mask fabrication technology has been developed for the ${\mu}-AJM$. By scanning the focused UV laser beam, a micro-mask pattern was fabricated directly without photolithography process and photomask. Two kinds of mask patterns were fabricated using SU-8 and photopolymer (Watershed 11110). Using fabricated mask patterns, abrasive-jet machining of Si wafer were conducted successfully.

Pressure Sensitive Adhesion Performances of SIS/SBS based UV-curable Pressure Sensitive Adhesives using Thiol-ene Reaction (Thiol-ene 반응을 이용한 UV경화형 SIS/SBS계 점착제의 점착물성)

  • Lim, Dong-Hyuk;Do, Hyun-Sung;Kim, Hyun-Joong;Yoon, Goan-Hee;Bang, Jung-Suk
    • Journal of Adhesion and Interface
    • /
    • v.6 no.3
    • /
    • pp.19-25
    • /
    • 2005
  • Synthetic rubber based pressure-sensitive adhesives (PSAs) usually containing SIS or SBS block copolymer, tackifier, plasticizer, and other additives are now widely used on various applications. As these PSAs are physically crosslinked and can be applied without the use of solvent, they are thermally processable and environmentally friendly. However these PSAs cannot be used in high temperature applications and in applications where solvent and chemical resistance properties are required. We developed the PSA adding UV curable system, such as thiol-ene system, to increase adhesion properties at elevated temperature. The adhesion properties such as probe tack, peel strength, shear adhesion failure temperature (SAFT) were evaluated. The probe tack test was conducted with varying probe materials and coating thickness of PSAs. Using the contact angle, the surface property of the cured PSAs was also observed.

  • PDF

Variation of Adhesion Characteristics of Acryl Copolymer/Multi-functional Monomer Based PSA by UV Curing (자외선 경화에 의한 아크릴 공중합체/다관능성 단량체 복합 감압점착제의 접착특성 변화)

  • Ryu, Chong-Min;Pang, Bei-Li;Kim, Hyung-Il;Park, Ji-Won;Lee, Seung-Woo;Kim, Hyun-Jung;Kim, Kyung-Man
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.315-320
    • /
    • 2012
  • Ultra violet (UV) curable pressure sensitive adhesives (PSA) were prepared by controlling both the structure of acryl copolymer and the functionality and content of multi-functional monomers. Acryl copolymer worked as the base polymer for giving the tackiness. Multi-functional monomers were used to vary the crosslinked structure and the degree of crosslink. Acryl copolymer showed the reduced peel strength after UV curing by decreasing the content of 2-ethylhexyl acrylate in the monomer composition. Both the peel strength of PSA and the content of residue found on silicon wafer decreased after UV curing by increasing the functionality of multi-functional monomers. UV curable PSA containing 20 phr six-functional monomer showed the higher peel strength before UV curing and the lower peel strength and the least residue on silicon wafer after UV curing.