Browse > Article
http://dx.doi.org/10.17702/jai.2012.13.4.156

Preparation and Characterization of Polyurethane/Organoclay Nanocomposites by UV Curing  

Shin, Geumsig (Department of Chemical Engineering, Hanyang University)
Chang, Young-Wook (Department of Chemical Engineering, Hanyang University)
Kim, Seong Woo (Department of Chemical Engineering, Kyonggi University)
Publication Information
Journal of Adhesion and Interface / v.13, no.4, 2012 , pp. 156-162 More about this Journal
Abstract
Polyurethane (PU)/organoclay nanocomposites were prepared by mixing UV curable urethane acrylate oligomer with organoclay, and a subsequent curing by UV irradiation. As organoclays, commercially available Cloisite 20A (C20A) and acrylsilane modified C20A were used. XRD and TEM analyses revealed that the UV cured PU/clay nanocomposites formed intercalated nanocomposites, and acrylsilane modified C20A are dispersed more finely than unmodified C20A in PU matrix. DMTA, pencil hardness and adhesion test onto PET substrate showed that the clay nanolayers induced an increase in the properties, and the enhancement in the properties was more pronounced in the PU/acrylsilane modified C20A nanocomposites than in the PU/unmodified C20A nanocomposites. It was also observed that the PU/surface modified clay nanocomposites showed remarkably lower shrinkage upon UV curing than the unfilled PU. The nanocomposites showed excellent optical transparency but lower gloss as compared to unfilled PU.
Keywords
UV curable polyurethane acrylate; acryl modified organoclay; nanocomposites; UV curing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. P. Fouassier and J. F. Rabek, Radiation curing in polymer science and technology, vols. I-IV, Elsevier, London (1993).
2 H. Nagata, M. Shiroishi, Y. Miyama, N. Mitsugi, and N. Miyamoto, Opt. Fib. Techol., 1, 283 (1995).   DOI
3 K. K. Baikerikar and A. B. Scranton, Polymer, 42, 431 (2001).   DOI
4 L. Fogelstrom, P. Antoni, E. Malmstrom, and A. Hult, Prog. Org. Coat., 55, 284 (2006).   DOI
5 T. N. Tey, A. M. Soutar, S. G. Mhaisalkar, H. Yu, and K. M. Hew, Thin Solid Films, 504, 384 (2006).   DOI
6 P. Barbeau, J. F. Gerard, B. Magny, J. P. Pascault, and G. Vigier, J. Polym. Sci. B: Polym. Phys., 37, 919 (1999).   DOI
7 M. Sangermano, G. Malucelli, E. Amerio, A. Priola, A. Billi, and G. Rizza, Prog. Org. Coat., 54, 134 (2005).   DOI
8 P. C. L. Baron, Z. Wang, and T. J. Pinnavaia, Appl. Clay Sci, 15, 11 (1999).
9 M. Alexander and P. Dubois, Mater. Sci. Eng., R-28, 1 (2000).
10 A. R. Vaia and E. P. Gianellis, Mater. Res. Sci. Bull. 26, 394 (2001).   DOI
11 S. J. Ahmadi, Y. D. Huang, and W. Li, J. Mater. Sci., 39, 1919 (2004).   DOI
12 F. M. Uhl, S. P. Davuluri, S. C. Wong, and D. C. Webster, Chem. Mater., 16, 1135 (2004).   DOI
13 F. M. Uhl, S. P. Davuluri, S. C. Wong, and D. C. Webster, Polymer, 45, 6175 (2004).   DOI
14 F. M. Uhl, D. C. Webster, S. P. Davuluri, and S. C. Wong, Eur. Polym. J., 42, 2596 (2006).   DOI
15 L. Keller, C. Decker, K. Zahouily, S. Benfarhi, J. M. Le Meins, and J. M. Brendle, Polymer, 45, 7437 (2004).   DOI
16 S. Benfarhi, C. Decker, L. Keller, and K. Zahouily, Eur. Polym. J., 40, 493 (2004).   DOI
17 C. Decker, L. Keller, K. Zahouily, and S. Benfarhi, Polymer, 46, 6640 (2005).   DOI
18 Y. Y. Wang and T. E. Hsieh, Chem. Mater., 17, 3331 (2005).   DOI
19 Y. Y. Wang and T. E. Hsieh, J. Mater. Sci., 42, 4451 (2007).   DOI
20 M. Sangermano, N. Lak, G. Malucelli, A. Samakande, and R. D. Sanderson, Prog. Org. Coat., 61, 89 (2008).   DOI
21 K. O. Adom, J. Schall, and C. A. Guymon, Macromolecules, 42, 3275 (2009).   DOI
22 B. S. Shemper, J. F. Morizur, M. Alirol, A. Domenech, V. Hulin, and L. J. Mathias, J. Appl. Polym. Sci., 93, 1252 (2004).   DOI