• Title/Summary/Keyword: 광합성 광량자속밀도

Search Result 14, Processing Time 0.034 seconds

Monitoring of plant induced electrical signal of broccoli (Brassica oleracea var. italica) under changing light and CO2 conditions (광 및 CO2 변화 조건에서 브로콜리(Brassica oleracea var. italica)의 전기적 신호 모니터링)

  • Park, Jin Hee;Kim, Han-Na
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.4
    • /
    • pp.351-356
    • /
    • 2021
  • Changing environmental conditions can affect plant growth by influencing water and nutrient transport and photosynthesis. Plant physiological responses under changing environmental conditions can be non-destructively monitored using electrodes as plant induced electrical signal (PIES). Objective of the study was to monitor PIES in response to increased CO2 and decreased photosynthetic photon flux density (PPFD). The PIES increased during day time when transpiration and photosynthesis occurs and monitored CO2 concentration was negatively correlated to the PIES. Enhanced CO2 concentration slightly reduced PIES, but the effect of increased CO2 was limited by light intensity. The effect of reduced PPFD was not appeared immediately because water and nutrient transport was not promptly affected by the light. The study was conducted to evaluate short-term effect of increasing CO2 and decreasing PPFD, hence proline content and chlorophyll fluorescence was not significantly affected by the conditions.

Study of Lettuce Growth Characteristic on Selective Light Transmitting Filter Film Covered Greenhouse (선택적 광 투과에 따른 상추 생육특성)

  • Kang, D.H.;Hong, S.J.;Lee, J.W.;Kim, D.E.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.22 no.1
    • /
    • pp.55-63
    • /
    • 2020
  • This study aimed to investigate responses of plant growth and photosynthesis to different kinds of covering materials with selective light transmit for red leaf lettuce (Lactuca sativa L.). Experimental pot design was attached UV blocking filter, red filter, blue filter, and green filter. The kinds of covering materials showed significant results for plant growth especially control, UV blocking filter, and red filter. The photosynthetic rate and anthocyanin content of red leaf lettuce were higher in control and UV blocking filter than others. The quality of red leaf lettuce was low in red, green, and blue film treatments because of too low anthocyanin content.

The Distribution Interpretation of Temperature, Humidity and PPFD in Hybrid Plant Factory According to Climate Change (기후변화에 따른 태양광병용형 식물공장의 온.습도 및 조도 분포 해석)

  • Kwon, Sook-Youn;Lim, Jae-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.704-707
    • /
    • 2011
  • 본 논문은 ZigBee 기반의 통합센서 네트워크 구축 및 모니터링 시스템 구현을 통해 계절과 시각, 그리고 천기상태에 따라 변화하는 태양광의 광합성유효광량자속밀도를 태양광병용형 식물공장 내부의 각 영역별로 측정 및 분석하고자 한다. 통합센서를 통해 수집된 정보는 식물의 생육에 필요한 적정 태양광 에너지가 유입되는 시간대와 보광을 필요로 하는 시간대 및 그 양을 파악하는데 활용되며, 이를 통해 조명 및 냉난방 기기를 지능적으로 제어함으로써 전체 에너지 소비를 절감하고자 한다.

  • PDF

Improvement of Growth of Potato (Solanum tuberosum L. cv. Dejima) Plants at In Vitro and Ex Vitro and Energy Efficiency by Environmental Control with Growth Stage in Photoautotrophic Micropropagation System (광독립영양 기내 미세증식 시스템에서 생육단계별 환경조절을 통한 감자의 기내 및 기외 생육과 에너지 효율 향상)

  • Oh, Myung-Min;Lee, Hoon;Son, Jung-Eek
    • Journal of Bio-Environment Control
    • /
    • v.18 no.1
    • /
    • pp.23-28
    • /
    • 2009
  • This study was conducted to evaluate the effect of optimized environment conditions with growth stage in photoautotrophic micropropagation on the growth of potato (Solanum tuberosum L. cv. Dejima) plantlets and energy efficiency. Optimum environment conditions at each stage were decided in our previous study. For the evaluation of optimized environment control, potato plantlets were cultured under four different conditions: photoautotrophic optimum conditions of photosynthetic photon flux density (PPFD) and $CO_2$ levels with growth stage (POG), photoautotrophic constant condition with average PPFD and $CO_2$ levels (PCA), photoauototrophic constant condition with maximum PPFD and $CO_2$ levels (PCM), and photomixotrophic conventional condition with 3% sucrose (PMC) as control. As a result, environment control with growth stage (POG) significantly promoted all the growth characteristics such as the number of nodes and unfolded leaves, shoot height, shoot diameter, and fresh and dry weights of potato grown in vitro. In addition, based on dry weight consumed electricity and $CO_2$ were the lowest in POG suggesting the highest energy efficiency among the treatments. After transferring potato plantlets to greenhouse, the plantlets under POG showed vigorous growth, which was pretty similar with those under PMC. The accumulations of dry matter in POG were 4.7 times in vitro and 3.8 times in greenhouse as much as those in the conventional control (PCM). Thus, we concluded that in vitro environment control with growth stage induced vigorous growth of potato plantlets both in vitro and in greenhouse with less energy consumption.

Environmental Factors and Growth Properties of Sasa borealis (Hack.) Makino Community and Effect its Distribution on the Development of Lower Vegetation in Jirisan National Park (지리산국립공원 조릿대의 입지환경 및 생장특성 분석과 하층식생에 미치는 영향)

  • Park, Seok-Gon;Yi, Myung-Hoon;Yoon, Jung-Won;Sin, Hyun-Tak
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.1
    • /
    • pp.82-90
    • /
    • 2012
  • In this study, we investigated the environmental factors and growth characteristics of Sasa borealis community inside a temperate deciduous forest and reviewed its effect on the lower vegetation and natural regeneration. The S. borealis community in the Jungsan-ri region of Jirisan National Park was chosen as the study area, and the vegetation and the environmental factors were investigated. The dominance value, height and foliage layer thickness were investigated as the growth characteristics of S. borealis in the area. As the environmental factors, we investigated the photosynthesis photon flux density (PPFD) of the shrub and ground layers as well as the chemical characteristics of the soil. Additionally, we investigated the flora on the ground layer of the area as well as the number and height of woody plants. The result showed that the height and foliage layer thickness of the S. borealis was closely related to the light conditions but the distribution was not determined simply by the effect of the environment or vegetation of the particular area. This may be deeply related with the unique survival strategy of S. borealis, a vegetably propagated plant, that it can extensively distributed on a heterogeneous resources environment in a forest as multiple culm are interconnected with each other through the rhizomes. The dense dominance and great height of S. borealis reduced the plant species diversity in the ground layer by decreasing the PPFD on the ground surface.

Effects of Supplemental Lighting of High Pressure Sodium and Lighting Emitting Plasma on Growth and Productivity of Paprika during Low Radiation Period of Winter Season (겨울철 약광기 파프리카의 생육 및 생산성에 대한 고압나트륨 및 Lighting Emitting Plasma 램프의 보광 효과)

  • Lee, Jong-Won;Kim, Ho Cheol;Jeong, Pyeong Hwa;Ku, Yang-Gyu;Bae, Jong Hyang
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.346-352
    • /
    • 2014
  • This research was carried out to investigate the effect of supplemental lighting on stable productivity of paprika (Capsicum annuum L.) during low radiation period of winter season. The supplemental lighting sources used in this research were high pressure sodium (HPS) and lighting emitting plasma (LEP). Photosynthetic photon flux density (PPFD) emitted from both lamps decreased as vertical distance from lamp increased. The PPFD of LEP lamps were twice more than that of the HPS lamp per unit distance, but the rate of decreased PPFD of t he LEP per unit distance was higher than that of HPS lamp. And different degrees of PPFD between HPS and LEP lamps by horizontal distance had a smaller degree of difference than by vertical distance at the 100 cm away point. As daily average PPFD measured at the top of the plant under the supplemental lighting during January, the supplemental lighting significantly increased radiation. Radiation of HPS and LEP lighting was 137% and 315% higher than control (without supplemental lighting = sunlight). Air temperature in the top of the plant was not significant different among treatments. HPS and LEP lighting had no effect on increase of flower settings. Leaf length and width with LEP lighting was the longest, photosynthetic was higher than those of other treatments. Supplemental lighting treatments significant increased fruit length and diameter. Especially LEP lighting treatment had a greater effect on fruit length and diameter. In conclusion, LEP lighting treatment during low radiation period greatly affected growth and production of paprika. Further research will be required for the suitable application of LEP lighting in paprika production.

Growth and Ground Coverage of Ophiopogon japonicus 'Nanus' under Different Shade Conditions (차광처리에 따른 애기소엽맥문동의 생장과 피복에 관한 연구)

  • Kang, Ae-Ran;Park, Seok-Gon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.2
    • /
    • pp.68-75
    • /
    • 2017
  • Demand for dwarf mondo grass (DMG; Ophiopogon japonicus 'Nanus') as an ornamental garden plant is expected to grow in the future. The purpose of this study was to investigate the levels of shade tolerance and ground cover by growing DMG under a variety of shade conditions for 18 months (May 2015~October 2016). DMG plants grown in bare ground for 3 years in Jangheung-gun, Jeonnam were used for testing. In an experimental site created in Naju city in Jeonnam, the DMG was planted in planters ($70cm{\times}70cm{\times}24cm$) and covered with a shading curtain to block natural light. Shaded conditions were then arranged under different levels of shade (0%, 55% and 75%). When the plants were grown, growth (leaf size, the number of leaves, fresh weight and dry weight) and ground coverage of DMG were analyzed. According to the results, DMG growth in terms of leaf size and the number of leaves was statistically higher under zero shade (full sunlight), when compared to other shaded conditions. DMG's fresh and dry weights were significantly greater under 0% and 55% shade, compared to those under 75% shade. The degrees of shade tolerance required for normal growth of DMG were found in the range of 0~50%, meaning that more than 50% shade may decrease plant growth. There were no statistical differences in ground coverage rates of DMG under different levels of shade. When 220 tillers were planted per $1m^2$ of plot, up to 80% of the area was covered by DMG after 18 months. Since DMG requires nutrient-rich soil to grow, sufficient nitrogen fertilizers are proposed to accelerate the ground cover of DMG. As DMG remained alive over the winter in the experiments, this study also suggests that DMG can be planted in the southern temperate region.

Study of Paprika Growth Characteristic on Covering Selective Light Transmitting Filter in Greenhouse (선택적 광 투과에 따른 파프리카 생육특성 연구)

  • Kang, D.H.;Kim, D.E.;Lee, J.W.;Hong, S.J.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.23 no.1
    • /
    • pp.59-66
    • /
    • 2021
  • This study aimed to a basic research for the development of dye-sensitized solar cells that the wavelength band required for crop growth is passed, and the wavelength band that is not necessary for crop growth can be used for the generation of electricity. The transmissivity according to the illuminance was about 10% higher in the Blue filter and the Green filter than in the Red filter, but the transmissivity according to the PPFD was about 10% higher in the Red filter and the Blue filter than in the Green filter. In addition, the greenhouse attached with 30% infrared blocking filter was predicted to have a lower air temperature than other greenhouses, but it was investigated that there was no significant difference. Therefore, it was investigated that the application of the infrared cut filter would not be appropriate in a greenhouse that controls the temperature by opening a window. As a result of investigating, it was found that the Green and Blue filter greenhouses had the severe overgrowth and the stems grew weaker. The fresh weight of paprika in the infrared blocking filter greenhouse was the highest at 678.9g, and the growth of Red filter and the control greenhouses was relatively poor. Photosynthetic rate, amount of transpiration, and stomatal conductivity were the infrared blocking filter and control greenhouse higher than others. On the other hand, the water use efficiency did not show a big difference.

Effects of Greenhouse Orientation on the Greenhouse Environment and the Growth of Tomato in Forcing Culture (시설방향이 시설내 환경과 촉성재배 토마토 생육에 미치는 영향)

  • Choi, Young-Hah;Park, Kyoung-Sub;Kang, Nam-Jun;Kim, Hong-Lim;Kwak, Yong-Bum;Kim, Heung-Deug;Goo, Dae-Hoe;Cho, Myoung-Hwan
    • Journal of Bio-Environment Control
    • /
    • v.19 no.1
    • /
    • pp.6-11
    • /
    • 2010
  • This experiment was conducted to investigate the effect of greenhouse orientation on the greenhouse environment and the growth and yield of tomato cv 'Momotaro-Yoku' in forcing culture. The photosynthetic phpton flux density (PPFD) of a.m was higher in north-south orientation than that in east-west orientation and it was opposed in the p.m. Mean PPFD of a day was higher in east-west orientation than that in north-south orientation because the light transmitting area became larger in east-west orientation with decrease of incidence angle. The PPFD at 60 cm point above ground of all furrows was poor due to shadows near plants and it was higher in north-south orientation than that in east-west orientation. The air temperature in the greenhouse was higher in east-west orientation than that in north-south orientation but there was no significant difference since mid February as solar altitude goes up. The soil temperature was some higher in east-west orientation than that in north-south orientation and there was not significant difference among ridges. In east-west orientation, as ripening was promoted, high early yield of tomato were obtained. So total yield was greater about 8% in east-west orientation than that in north-south orientation. Therefore, it was considered that east-west orientation is more advantageous than north-south orientation for forcing culture of tomato.

Response of Nutrient Solution and Photosynthetic Photon Flux Density for Growth and Accumulation of Antioxidant in Agastache rugosa under Hydroponic Culture Systems (식물공장에서 양액의 종류 및 PPFD가 배초향의 생장 및 항산화 물질에 미치는 영향)

  • Kim, Sung Jin;Bok, Kwon Jung;Lam, Vu Phong;Park, Jong Seok
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.249-257
    • /
    • 2017
  • Agastache rugosa, is a perennial medicinal plant commonly used in Chinese herbalism, and may have anti-atherogenic and antibacterial properties. Here in this study, we investigated the growth and variations in antioxidant contents of A. rugosa in response to nutrient solution and photosynthetic photon flux density (PPFD) with artificial lighting for a hydroponics culture. Fluorescent light at 150, and $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD with a 16/8 (light/dark) photoperiod, combined with four different nutrient solutions [developed by Horticulture experiment station in Japan (HES), University of Seoul (UOS), Europe vegetable research center (EVR), Otsuka-house 1A (OTS)], were used in a hydroponics culture system for 6 weeks. The shoot and root dry weights of A. rugosa grown with the OTS were significantly higher than those of other nutrient solutions. The amount of tilianin was the highest grown with the OTS, followed by EVR, HES, and UOS. Total acacetin content was the highest in A. rugosa grown under EVR which was statistically similar with OTS. The A. rugosa grown under $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD produced higher fresh weight and both acacetin and tilianin contents than that grown under $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD. The present results suggested that OTS along with $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD could be an optimum growing condition for better growth and higher accumulation of tilianin and acacetin contents in A. rugosa with hydroponic culture systems in a plant factory.