• Title/Summary/Keyword: 광학 정렬

Search Result 256, Processing Time 0.062 seconds

Computer-Aided Alignment of an Earth Observation Camera (컴퓨터를 이용한 지구관측 카메라의 광학정렬)

  • Kim, Eugene D.;Choi, Young-Wan;Kang, Myung-Seok;Kim, Ee-Eul;Yang, Ho-Soon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.142-146
    • /
    • 2004
  • Spaceborne earth observation or astronomical payloads often use Cassegrain-type telescopes due to limits in mass and volume. Precision optical alignment of such a telescope is vital to the success of the mission. This paper describes the alignment simulation and experiment of computer-aided alignment method during the assembly of MAC (Medium-sized Aperture Camera) telescope for spaceborne earth observation.

Null alignment system of the optical beam director (광집속장치의 광학정렬을 위한 null 광학계)

  • 김연수;김현숙;김현규
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.3
    • /
    • pp.254-257
    • /
    • 2004
  • A null optical system for monitoring the alignment of the optical beam director is proposed instead of the conventional autocollimator alignment system. A null optical system for the optical beam director of aperture 30 cm is designed and its performance is analysed.

Tolerance Allocation Method for IR Optics Fabrication Using Monte-Carlo Simulation Based on Measured Reflective Eccentricity (편심측정 결과가 반영된 몬테카를로 시뮬레이션을 이용한 적외선 광학계 조립정렬 공차 할당 기법)

  • Yoo, Jae-Eun
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.4
    • /
    • pp.161-169
    • /
    • 2011
  • In this paper, a tolerance allocation method using Monte-Carlo simulation with measured reflective eccentricity for high-sensitive IR optics is proposed. During optics fabrication and alignment, reflective eccentricity was measured using an optical centration measurement instrument. A Monte-Carlo simulation was performed using measured eccentricity data, and it gives statistical estimated performance of the optics after fabrication. The validity of the proposed tolerance allocation method was verified comparing the estimated MTF result with the measured MTF result of the fabricated optics.

Optical alignment of a high-resolution optical earth observation camera for small satellites (소형 위성용 고해상도 광학카메라의 광학정렬)

  • Kim, Eugene D.;Park, Young-Wan;Kang, Myung-Seok;Kim, Ee-Eul;Yang, Ho-Soon
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.391-396
    • /
    • 2004
  • Spaceborne earth observation or astronomical payloads often use Cassegrain-type telescopes due to the limits in mass and volume. Precision optical alignment of such a telescope is vital to the success of the mission. This paper describes the simulated optical alignment methods using interferograms, wavefront error, and reverse-optimization method for different levels of alignment accuracy. It concludes with the alignment experiment results of a Cassegrain type spaceborne camera with 300mm entrance pupil diameter.

Alignment of a ring laser cavity by using the cavity transmission spectrum control method (투과광 스펙트럼 측정법을 이용한 링레이저 공진기의 광학적 정렬)

  • 전형욱;최용진;이기홍;신상훈;이혁수;손정영
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.6
    • /
    • pp.456-460
    • /
    • 1997
  • Several methods of aligning ring type cavities have been investigated for long time. The measurement of cavity transmission spectrum control is somewhat effective due to aligning cavity with measuring cavity loss at the same time. In this research, four mirrors are aligned and attached by the measurement of pulse width of the transmitted light. The intracavity loss is optimized to about 0.98%, giving the calculated total reflection coefficient of about 99.02%.

  • PDF

웨이퍼 스텝퍼의 중첩정밀도 측정에 관한 연구

  • 이종현;장원익;이용일;김도훈;최부연;정기로;임태영;남병호;김상철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.192-197
    • /
    • 1993
  • 반도체 기억소자의 급격한 발전추세에 대응하기 위해서는 노광(exposure) 장비의 증첩정밀도 (overlay accuracy)가 같이 개선되어야 한다. 본 연구에서는 64M ERAM 제조를 목적으로개발된 스텝 퍼(stepper) 시스템의 성능평가 항목 중에서 증첩정밀도에대한 측정방법 및 현재까지의 연구결과를 기술하였다. 제작된 웨이퍼 정렬계는 off-axis 및 TTL 광학계와 이들 정렬신호에 따라 움직이는 웨이 퍼 구동계로 구성되어 있다. off-axis 광학계는 화상처리와 회절의 두 가지 방식이 가능하도록 설계 제작되었으며, TTL 광학계는 dual beam interferometric method를 이용하였다. 본 실험의 결과는 웨이퍼 정렬계의 특성을 평가한 것으로서, 현재까지 off-axis 정렬 방법만으로 얻은 증첩정밀도는 0.26-0.29$\mu$m (m+3 $\sigma$ )이다. 따라서 여기에 이미 제작되어 있는 TLL 정렬광학계를 추가로 사용하면 0.1 $\mu$m 이하의 정밀도에 이를 것으로 예측된다.

Alignment of Inertial Navigation Sensor and Aircraft Fuselage Using an optical 3D Coordinate Measuring Device (광학식 3차원 좌표측정장치를 이용한 관성항법센서와 기체의 정렬기법)

  • Kim, Jeong-ho;Lee, Dae-woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.41-48
    • /
    • 2019
  • This paper deals with a method of aligning an aircraft fuselage and an inertial navigation sensor using three-dimensional coordinates obtained by an optical method. In order to verify the feasibility, we introduce the method to accurately align the coordinate system of the inertial navigation sensor and the aircraft reference coordinate system. It is verified through simulation that reflects the error level of the measuring device. In addition, optimization method based alignment algorithm is proposed for connection between optical sensor and inertial navigation sensor.

Design of null lens for Alignment of the Unstable Laser Resonator (불안정형 레이저 공진기 정렬을 위한 null 렌즈 설계)

  • Kim, Hyun-Sook;Kim, Yeon-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.2
    • /
    • pp.186-190
    • /
    • 2006
  • The use of null optics is proposed as a new concept for the precise alignment of a confocal unstable resonator. The characteristics of the proposed null optics are investigated and analysed with the designed null lens for a real confocal unstable resonator of which the length is 3.5 m. As a result of the analysis, the pupil map data are shown about the despace error of 1.0 mm and tilt error of 1.0 mrad.

Fabrication and Performance Test of Small Satellite Camera with Focus Mechanism (포커스 메커니즘이 적용된 소형 위성 카메라의 제작 및 성능 실험)

  • Hong, Dae Gi;Hwang, Jai Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.4
    • /
    • pp.26-36
    • /
    • 2019
  • The precise alignment between optical components is required in high-resolution earth observation satellites. However, the misalignment of optical components occurs due to external factors such as severe satellite launch environment and space environment. A satellite optical system with a focus mechanism is required to compensate for the image quality degraded by these misalignments. This study designed, fabricated, aligned precisely, and carried out a performance tests for the image quality of the system. The satellite optical camera performance tests were carried out to check the image quality change by operating the focus mechanism and to analyze the satellite optical system MTF by photographing USAF target using the autocollimator. According to the experimental results, the misalignments can be compensated sufficiently with the focus mechanism. Finally the basic data for re-focusing algorithm of the optical system was obtained through this study.

Study of the Acceptable Tolerances of a Window Hermetic Optical Connector (Window 밀폐형 광 커넥터의 허용 공차에 관한 연구)

  • Jeon, Woo-Sung;Jung, Mee-Suk
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.5
    • /
    • pp.210-217
    • /
    • 2022
  • In this paper, a study is conducted on the acceptable tolerance of an alignment device to reduce the optical loss caused by the alignment tolerance of a window hermetic optical connector. To increase the transmission distance of optical signals and fiber-optic communication systems, it is necessary to maintain and improve the high optical efficiency of the connectors used to bond optical fibers. In the case of the window hermetic optical connector, the optical system is aligned through an alignment device. At this time, since the two connectors are used together, each component is fixed, and further alignment is impossible. The alignment tolerance of the housing system and pin used to align the optical system of the connector causes optical loss, leading to serious problems in the fiber-optic communication system. Thus, to find the acceptable tolerance required for manufacturing the optical-connector alignment device, tolerance analysis is performed on the components of the optical connector, such as the ball lens and the window. We also implement single-mode and multimode optical-connector systems, respectively. Based on the results, we determine an acceptable tolerance value for the alignment device.