• Title/Summary/Keyword: 광학정렬

Search Result 256, Processing Time 0.029 seconds

Image Encryption and Decryption System using Frequency Phase Encoding and Phase Wrapping Method (주파수 위상 부호화와 위상 랩핑 방법을 이용한 영상 암호화 및 복호화 시스템)

  • Seo, Dong-Hoan;Shin, Chang-Mok;Cho, Kyu-Bo
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.507-513
    • /
    • 2006
  • In this paper, we propose an improved image encryption and fault-tolerance decryption method using phase wrapping and phase encoding in the frequency domain. To generate an encrypted image, an encrypting key which denotes the product of a phase-encoded virtual image, not an original image, and a random phase image is zero-padded and Fourier transformed and its real-valued data is phase-encoded. The decryption process is simply performed by performing the inverse Fourier transform for multiplication of the encrypted key with the decrypting key, made of the proposed phase wrapping method, in the output plane with a spatial filter. This process has the advantages of solving optical alignment and pixel-to-pixel mapping problems. The proposed method using the virtual image, which does not contain any information from the original image, prevents the possibility of counterfeiting from unauthorized people and also can be used as a current spatial light modulator technology by phase encoding of the real-valued data. Computer simulations show the validity of the encryption scheme and the robustness to noise of the encrypted key or the decryption key in the proposed technique.

Polymer-based Large Core Optical Splitter for Multimode Optical Networks (멀티모드 광네트워크용 폴리머기반 대구경 광분배기)

  • An, Jong Bae;Lee, Woo-Jin;Hwang, Sung Hwan;Kim, Gye Won;Kim, Myoung Jin;Jung, Eun Joo;Moon, Jong Ha;Kim, Jin Hyeok;Rho, Byung Sup
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.4
    • /
    • pp.184-188
    • /
    • 2013
  • Two types of polymer-based optical splitters with $200{\mu}m$ large core are presented for optical multimode networks, such as smart home networks, intelligent automotive networks, etc. Optical splitters that have 1:1 symmetric and 9:1 asymmetric structure were fabricated by a ultra violet(UV)-imprint technology using a deep etched Si(silicon) master by the Bosch process. In this paper, we successfully fabricated the symmetric and asymmetric optical splitters with suitable optical network applications.

Measurement of Refractive Index of Liquids by the Maximum and Minimum Deviated Laser Beam (레이저광의 최대.최소 편향법을 이용한 액체의 굴절률 측정)

  • Lee, Jae-Ran;Kim, Sok-Won;Lee, Yong-San
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.3
    • /
    • pp.182-186
    • /
    • 2008
  • The prism spectrometer is a standard device for the measurement of refractive index; it is used in undergraduate laboratories. Typically, however, lots of attention is required in the alignment, and the accuracy of the obtained refractive index is not so high in spite of the durability of the device. The maximum and minimum deviation method, which compensates the disadvantages of the prism spectrometer, can be composed cost effectively using a length marking tape and a rotating platform. It can measure the refractive indices accurately by utilizing a wide screen. In this study, the equal sided hollow prism whose length is 26 mm was fabricated and measured the refractive indices of seven kind of liquids (pure water, $C_3H_5(OH)_2$, $CCl_4$, $C_6H_4NH_2$, $CS_2$, $C_6H_4(CH_3)_2)$ by using the prism spectrometer and maximum and minimum deviated laser beam method at the wavelengths of He-Ne laser (${\lambda}$= 632.8 nm) and YVO4 laser (${\lambda}$= 532 nm). The result shows that the data obtained by the latter method are more accurate and precise than those obtained by the former device.

Fabrication of a Mach-Zehnder interferometer for education using a rotating glass plate and a 3D printer (회전 유리판과 3D 프린터를 이용한 교육용 마흐젠더 간섭계 제작)

  • Jang, Seong-Hun;Ju, Young-G
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.5
    • /
    • pp.213-220
    • /
    • 2017
  • This paper proposes how to fabricate an educational Mach-Zehnder interferometer that is easy to align and inexpensive, using 3D printers and semiconductor lasers. The interferometer consists of a body $165mm{\times}120mm{\times}57mm$ in size, mirror mounts, a laser holder, beam splitters, and so on. The laser path is adjusted by 4 mirror mounts, each comprised of rubber bands, small metal wires, and a screw. The interference fringe is enlarged by the lens at the final stage. The refractive index of a slide glass was measured by counting the number of moving interference fringes while the slide glass, inserted into one of the two interferometer arms, is rotating. The formula for the refractive index as a function of the optical-path difference and rotation angle was obtained, and used to calculate the refractive index of glass from the interferometer experiment. The use of a rotating glass in one arm of the interferometer nullifies the need for a precision stage, which despite its high cost is often required to observe the moving interference fringe in the classroom. Therefore, the 3D-printed Mach-Zehnder interferometer proposed in this paper can be very useful for education, because of its affordability and performance. It enables students to perform both qualitative and quantitative studies using a 3D-printed interferometer, such as measuring the refractive index of a glass sample, and the wavelength of light.

Optically transparent ultrasound transducers for combined ultrasound and photoacoustic imaging: A review (초음파-광음향 융합 영상을 위한 투명 초음파 변환기)

  • Shunghun Park;Jin Ho Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.441-451
    • /
    • 2023
  • Ultrasound transducers are an essential component of combined photoacoustic and ultrasound imaging systems and play an important role in image evaluation. However, ultrasound transducers are opaque; therefore, light must bypass the ultrasound transducer to reach the target point to produce a photoacoustic image. Providing different paths for the optical and acoustic signals results in a complicated system design, increasing the system volume. To overcome these problems, an optically Transparent Ultrasound Transducer (TUT) was developed. Unlike conventional opaque ultrasound transducers, optically TUT can be fabricated by a variety of manufacturing methods and they are suitable for use with specific piezoelectric elements and serve various purposes. In this study, a comparative analysis of the results of using Lithium Niobate (LNO), Lead Magnesium Niobate-Lead Titanate (PMN-PT), and Polyvinylidene Difluoride (PVDF), which are materials used in piezoelectric element-based TUT. LNO is a piezoelectric element widely used in TUT, and PMN-PT has been actively studied recently with a higher transmission and reception rate than LNO. Existing TUT have lower ultrasound resolution than photoacoustic resolution, but they have recently been manufacturing focused TUT with high ultrasound resolution using PVDF. A comparative analysis of the production results of these TUT was performed.

Guided-mode Resonances in Periodic Surface Structures Induced on Si Thin Film by a Laser (레이저에 의해 생성된 Si 박막의 주기적 표면 구조에서의 도파모드 공진 연구)

  • Ji Hyuk Lee;Yoon Joo Lee;Hyun Hong;Eun Sol Cho;Ji Young Park;Ju Hyeon Kim;Min Jin Kang;Eui Sun Hwang;Byoung-Ho Cheong
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.6
    • /
    • pp.241-247
    • /
    • 2023
  • We examine the spectral characteristics of laser-induced periodic surface structures (LIPSSs) formed on an amorphous silicon film irradiated by a 355-nm nanosecond laser. A Gaussian beam with a diameter of 196 ㎛ is used to perform a two-dimensional raster scan. The laser's pulse number is varied from 190 to 280, and its intensity is adjusted within 100-130 mJ/cm2. LIPSSs with a periodicity of approximately 330 nm form on the surface of the Si film, aligned perpendicular to the laser's polarization. Transmission spectra of the samples show dips around 700 nm for transverse electric polarization and around 500 nm for transverse magnetic polarization. The features are investigated with a one-dimensional-grating model using a rigorous coupled-wave analysis. Simulations confirm that the observed dips are due to the resonant modes, depending on the polarization.

Deep Learning OCR based document processing platform and its application in financial domain (금융 특화 딥러닝 광학문자인식 기반 문서 처리 플랫폼 구축 및 금융권 내 활용)

  • Dongyoung Kim;Doohyung Kim;Myungsung Kwak;Hyunsoo Son;Dongwon Sohn;Mingi Lim;Yeji Shin;Hyeonjung Lee;Chandong Park;Mihyang Kim;Dongwon Choi
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.143-174
    • /
    • 2023
  • With the development of deep learning technologies, Artificial Intelligence powered Optical Character Recognition (AI-OCR) has evolved to read multiple languages from various forms of images accurately. For the financial industry, where a large number of diverse documents are processed through manpower, the potential for using AI-OCR is great. In this study, we present a configuration and a design of an AI-OCR modality for use in the financial industry and discuss the platform construction with application cases. Since the use of financial domain data is prohibited under the Personal Information Protection Act, we developed a deep learning-based data generation approach and used it to train the AI-OCR models. The AI-OCR models are trained for image preprocessing, text recognition, and language processing and are configured as a microservice architected platform to process a broad variety of documents. We have demonstrated the AI-OCR platform by applying it to financial domain tasks of document sorting, document verification, and typing assistance The demonstrations confirm the increasing work efficiency and conveniences.

Research on Fabrication of Silicon Lens for Optical Communication by Photolithography Process (포토리소그래피를 통한 광통신용 실리콘 렌즈 제작 및 특성 연구)

  • Park, Junseong;Lee, Daejang;Rho, Hokyun;Kim, Sunggeun;Heo, Jaeyeong;Ryu, Sangwan;Kang, Sung-Ju;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.2
    • /
    • pp.35-39
    • /
    • 2018
  • In order to improve the coupling efficiency, a collimator lens that collects the light emitted from the laser diode at a wide angle to the core of the optical fiber is essential. Glass mold method using a mold is widely used as a collimator lens currently used. Although this method is inexpensive to produce, it is difficult to form precisely and quality problems such as spherical aberration. In this study, the precision of surface processing was improved by replacing the existing glass mold method with the semiconductor process, and the material of the lens was changed to silicon suitable for the semiconductor process. The semiconductor process consists of a photolithography process using PR and a dry etching process using plasma. The optical coupling efficiency was measured using an ultra-precision alignment system for the evaluation of the optical characteristics of the silicon lens. As a result, the optical coupling efficiency was 50% when the lens diameter was $220{\mu}m$, and the optical coupling property was 5% or less with respect to the maximum optical coupling efficiency in the lens diameter range of $210-240{\mu}m$.

GaN epitaxy growth by low temperature HYPE on $CoSi_2$ buffer/Si substrates (실리콘 기판과 $CoSi_2$ 버퍼층 위에 HVPE로 저온에서 형성된 GaN의 에피텍셜 성장 연구)

  • Ha, Jun-Seok;Park, Jong-Sung;Song, Oh-Sung;Yao, T.;Jang, Ji-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.4
    • /
    • pp.159-164
    • /
    • 2009
  • We fabricated 40 nm-thick cobalt silicide ($CoSi_2$) as a buffer layer, on p-type Si(100) and Si(111) substrates to investigate the possibility of GaN epitaxial growth on $CoSi_2$/Si substrates. We deposited GaN using a HVPE (hydride vapor phase epitaxy) with two processes of process I ($850^{\circ}C$-12 minutes + $1080^{\circ}C$-30 minutes) and process II ($557^{\circ}C$-5 minutes + $900^{\circ}C$-5 minutes) on $CoSi_2$/Si substrates. An optical microscopy, FE-SEM, AFM, and HR-XRD (high resolution X-ray diffractometer) were employed to determine the GaN epitaxy. In case of process I, it showed no GaN epitaxial growth. However, in process II, it showed that GaN epitaxial growth occurred. Especially, in process II, GaN layer showed selfaligned substrate separation from silicon substrate. Through XRD ${\omega}$-scan of GaN <0002> direction, we confirmed that the combination of cobalt silicide and Si(100) as a buffer and HVPE at low temperature (process II) was helpful for GaN epitaxy growth.

효과적인 일함수 조절을 위한 그래핀-고분자의 적층 구조

  • Cha, Myeong-Jun;Kim, Yu-Seok;Jeong, Min-Uk;Song, U-Seok;Jeong, Dae-Seong;Lee, Su-Il;An, Gi-Seok;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.210-210
    • /
    • 2013
  • 그래핀은 뛰어난 기계적, 화학적, 광학적, 전기적 특성을 가지고 있는 2차원 물질로, 대면적 합성법과 전사 공정을 통해 다양한 기판에서의 사용이 가능해지면서 차세대 전자 소자로 활용하기위한 활발한 연구가 이루어지고 있다. 디스플레이, 태양전지의 전극과 전계 효과 트랜지스터의 채널로 적용한 연구에서 우수한 결과들을 보이고 있다. 특히, 금속/금속 산화물 전극은 염료 감응형 태양전지와 유기 발광 다이오드 구조에서 화학적으로 불안정할 뿐 아니라 일함수가 고정되어 쇼트키 접촉이 형성되면 저항을 낮추기 어렵지만, 그래핀은 금속/금속 산화물 전극보다 화학적으로 안정하고 일함수의 조절이 가능해 옴 접촉 형성에 용이하다. 그래핀의 일함수를 조절하는 연구는 크게 공유결합과 비공유 결합을 이용한 방법이 시도된다. 공유 결합을 이용한 방법은 합성과정에서 그래핀의 구조에 내재된 결함 혹은 새로운 결함을 형성하여 다른 원소를 첨가하는 방법이다. 이러한 방법은 그래핀의 결함 영역에서 작용하기 때문에 그래핀 전자 구조의 높은 수준 조절을 위해선 그래핀 구조의 파괴가 동반된다. 반면, 비공유 결합을 이용한 방법은 전하 이동 도핑 효과를 이용해 그래핀의 전자 구조를 제어하는 방법으로, 금속/금속산화물/기능기와 그래핀의 적층으로 복합 구조를 형성하는 방법이다. 금속/금속 산화물과의 복합구조는 안정적인 p-형 도핑이 보고되었지만, n-형 도핑은 대기중의 수분, 산소 그리고 기판과의 상호작용에 의해 대기중에서 불안정해 추가적인 피막공정이 요구된다. 기능기를 이용한 적층 구조는 그래핀과 기판사이의 상호작용 혹은 그래핀 전자 구조를 다양한 기능기를 이용해 제어하는 것으로, 이극성을 가진 자기정렬 단일층(self-assembled monolayers)이 대표적인 방법이다. 공간기(spacer)의 길이나 말단기(end group)의 종류로 p-형과 n-형의 도핑 수준을 제어할 수 있지만, 흡착기(chemisorbing groups)의 반응성이 기판의 화학적, 물리적 표면상태에 의존하기때문에 기판 선택이 제약되며 전처리 공정이 요구될 수 있는 한계가 있다. 본 연구에서는 다양한 기판에 적용가능한 용액 공정을 이용해 그래핀과 고분자를 적층하였고, 안정적이고 효과적으로 일함수를 낮추는 구조를 확인하였다.

  • PDF