• Title/Summary/Keyword: 광파측정

Search Result 99, Processing Time 0.027 seconds

A Study on Smart Accuracy Control System based on Augmented Reality and Portable Measurement Device for Shipbuilding (조선소 블록 정도관리를 위한 경량화 측정 장비 및 증강현실 기반의 스마트 정도관리 시스템 개발)

  • Nam, Byeong-Wook;Lee, Kyung-Ho;Lee, Won-Hyuk;Lee, Jae-Duck;Hwang, Ho-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.65-73
    • /
    • 2019
  • In order to increase the production efficiency of the ship and shorten the production cycle, it is important to evaluate the accuracy of the ship components efficiently during the drying cycle. The accuracy control of the block is important for shortening the ship process, reducing the cost, and improving the accuracy of the ship. Some systems have been developed and used mainly in large shipyards, but in some cases, they are measured and managed using conventional measuring instruments such as tape measure and beam, optical instruments as optical equipment, In order to perform accuracy control, these tools and equipment as well as equipment for recording measurement data and paper drawings for measuring the measurement position are inevitably combined. The measured results are managed by the accuracy control system through manual input or recording device. In this case, the measurement result is influenced by the work environment and the skill level of the worker. Also, in the measurement result management side, there are a human error about the lack of the measurement result creation, the lack of the management sheet management, And costs are lost in terms of efficiency due to consumption. The purpose of this study is to improve the working environment in the existing accuracy management process by using the augmented reality technology to visualize the measurement information on the actual block and to obtain the measurement information And a smart management system based on augmented reality that can effectively manage the accuracy management data through interworking with measurement equipment. We confirmed the applicability of the proposed system to the accuracy control through the prototype implementation.

A Study on the Improvement of Performance Testing System of Domestic Surveying Equipment (국내 측량장비 성능검사제도 개선방안 연구)

  • MIN, Kwan-Sik
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.1
    • /
    • pp.53-63
    • /
    • 2016
  • In this paper, we proposed the improvements for performance test and surveying equipment regulations, standards, methods and procedures, depending on the need of improving the legal system for surveying equipment in a diverse and sophisticated surveying industry. This research was performed first investigating the existing legal systems(Act on the establishment and management of spatial data, Framework act on national standards, ISO 17123, JIS B 7912) with respect to the surveying equipment performance testing and the research for IOS and KOLAS suggested the improvements on the application for the surveying equipment performance testing standard. More exactly, first, two years were presented for the surveying equipment performance testing cycle considering the precise accuracy of the instrument stability, purpose and frequency of use, etc. Second, the abolition of the measurement distance by grade and the upward or cross-grade adjustment of the single prism standards about the light wave rangefinder and total station were suggested for the improvement on survey equipment performance criteria. Third, since the main function of total station is focused on a three-dimensional coordinate measurement due to the improvement of surveying equipment performance testing, it was proposed to use the precision(repeatability) of the coordinate measuring method as an evaluation method.

A Study on Matching Method of Hull Blocks Based on Point Clouds for Error Prediction (선박 블록 정합을 위한 포인트 클라우드 기반의 오차예측 방법에 대한 연구)

  • Li, Runqi;Lee, Kyung-Ho;Lee, Jung-Min;Nam, Byeong-Wook;Kim, Dae-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.123-130
    • /
    • 2016
  • With the development of fast construction mode in shipbuilding market, the demand on accuracy management of hull is becoming higher and higher in shipbuilding industry. In order to enhance production efficiency and reduce manufacturing cycle time in shipbuilding industry, it is important for shipyards to have the accuracy of ship components evaluated efficiently during the whole manufacturing cycle time. In accurate shipbuilding process, block accuracy is the key part, which has significant meaning in shortening the period of shipbuilding process, decreasing cost and improving the quality of ship. The key of block accuracy control is to create a integrate block accuracy controlling system, which makes great sense in implementing comprehensive accuracy controlling, increasing block accuracy, standardization of proceeding of accuracy controlling, realizing "zero-defect transferring" and advancing non-allowance shipbuilding. Generally, managers of accuracy control measure the vital points at section surface of block by using the heavy total station, which is inconvenient and time-consuming for measurement of vital points. In this paper, a new measurement method based on point clouds technique has been proposed. This method is to measure the 3D coordinates values of vital points at section surface of block by using 3D scanner, and then compare the measured point with design point based on ICP algorithm which has an allowable error check process that makes sure that whether or not the error between design point and measured point is within the margin of error.

Refractometric Glucose Biosensor Incorporating a Vertically Coupled Microring Resonator in Polymeric Waveguides (수직형 폴리머 마이크로링 공진기 기반의 글루코스 바이오 센서)

  • Kim, Gun-Duk;Son, Keun-Sik;Lee, Hak-Soon;Kim, Ki-Do;Lee, Sang-Shin
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.2
    • /
    • pp.127-131
    • /
    • 2008
  • A refractometric glucose biosensor incorporating a vertically coupled microring resonator in polymers was proposed and realized. The ring was covered with a target analyte of glucose solution with a certain concentration, so that its effective refractive index could be altered and, as a result, the resonance wavelength of the sensor was shifted. Therefore the concentration of the glucose solution can be estimated by observing the shift in the resonance wavelength. Two schemes were exploited for enhancing the sensitivity of the sensor. First, the effective refractive index of the polymeric waveguide used for the resonator sensor was adjusted to approach that of the target analyte as best as possible. Second, the ring waveguide, which serves as a crucial sensing part, was appropriately over-etched to enlarge its contact area with the analyte. The proposed resonator sensor was designed with the beam propagation method. The refractive indices of the core and cladding polymer involved were 1.430 and 1.375 respectively, leading to the waveguide's effective refractive index of ${\sim}1.390$, which is faiirly close to that of the glucose solution of ${\sim}1.333$. The prepared ring resonator with the $400-{\mu}m$ radius exhibited the free spectral range of 0.66 nm, the bandwidth of 0.15 nm, and the quality factor of 10,000. For the sensor operating at 1,550 nm wavelength, the achieved sensitivity was as great as 0.28 pm/(mg/dL), which is equivalent to 200 nm/RIU.

The Fundamental Studies and Development of Modified Electrothermal Vaporization Hollow Cathode Glow Discharge Cell (개선된 전열증기화 속빈음극관 글로우 방전셀의 기초연구 및 개발)

  • Lee, Seong-Hun;Cho, Won-Bo;Jeong, Jong-Pil;Choi, Woo-Chang;Kim, Kyu-Whan;Woo, Jeong-Su;Lee, Chang-Su;Kang, Dong-Hyun;Lee, Sang-Chun
    • Analytical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.514-520
    • /
    • 2002
  • The electrothermal vaporization (ETV) hollow cathode glow discharge atomic emission spectrometer for analysis of liquid sample has been developed and characterized. This system has improved the sample introduction method of electrothermal vaporization and the hollow cathode glow discharge. The sample introduction method was possible to provide high analyte transport efficiency to the plasma by helix coil made of tungsten material. In addition, small volume samples (<$30{\mu}{\ell}$) could be used. The system has glow discharge cell with special design for improvement of precision. The effect of discharge parameters such as discharge power, gas flow rate has been studied to find optimum condition. The emitted light was effectively carried into detector by fiber optic cable in UV region. The calibration curve of Pb, Cd were obtained with 3 samples.

Growth and Anthocyanin Content of Lettuce as Affected by Artificial Light Source and Photoperiod in a Closed-type Plant Production System (밀폐형 식물생산시스템에서 인공광원과 광조사 시간에 따른 상추의 생장 및 안토시아닌 함량)

  • Park, Ji Eun;Park, Yoo Gyeong;Jeong, Byoung Ryong;Hwang, Seung Jae
    • Horticultural Science & Technology
    • /
    • v.30 no.6
    • /
    • pp.673-679
    • /
    • 2012
  • This study was conducted to examine the effect of artificial light source and photoperiod on the growth of leaf lettuce (Lactuca sativa L.) 'Seonhong Jeokchukmyeon' in a closed-type plant production system. Seedlings were grown under 3 light sources, fluorescent lamp (FL, Philips Co. Ltd., the Netherlands), WL #1 (Hepas Co. Ltd., Korea), and WL #2 (FC Poibe Co., Ltd., Korea), each with 3 photoperiods, 12/12, 18/6, and 24/0 (Light/Dark). An irradiance spectrum analysis showed that FL has various peaks in the 400-700 nm range, while WL #1 and WL #2 have only one monochromatic peak at 450 and 550 nm, respectively. The greatest plant height, fresh and dry weights were obtained in the 24/0 (Light/Dark) photoperiod. The 24/0 (Light/Dark) photoperiod treatment promoted vegetative growth of the leaf area. Length of the longest root, number of leaves, fresh weight, and total anthocyanin contents were greater in FL than in either WL #1 or #2. The greatest chlorophyll fluorescence (Fv/Fm) was found in the 12/12 (Light/Dark) photoperiod with FL treatment. The energy use efficiency of the LED increased by about 35-46% as compared to FL. Results suggest a possibility of LED being used as a substitute light source for fluorescent lamp for lettuce cultivation in a plant factory system.

Analysis of Geospatial Information Construction Efficiency by 3D Laser Scanner Integrated with Total Station (3D 레이저 스캐너와 토털스테이션 통합에 의한 공간정보 구축의 효율성 분석)

  • Park, Joon-Kyu;Lee, Keun-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.638-643
    • /
    • 2017
  • The 3D laser scanner operates by measuring the distance from the sensor to the target and operates on the same principle as Electronic Distance Measuring (EDM). Recently, 3D laser scanning technology has been rapidly developed in line with the strongly increasing demand for 3D information acquisition. Therefore, it is now possible to more easily acquire geometric information of various objects existing in real space. In this study, we constructed geospatial information by using new equipment which integrated 3D laser scanner and total station, and we suggest the possibility of using new technology for geospatial information construction by comparing and analyzing with existing methods. In the study result, we demonstrated the efficiency of the geospatial information constructed by integration of 3D laser scanner and total station. The proposed method is expected to shorten the time required for data acquisition compared to the existing method using the existing total station. Furthermore, it is possible to use various methods such as cross section analysis and volume calculation using the acquired data. In the future, spatial information construction by integration of 3D laser scanner and total station will help improve work efficiency in related fields.

Effectiveness of Beam-propagation-method Simulations for the Directional Coupling of Guided Modes Evaluated by Fabricating Silica Optical-waveguide Devices (광도파로 모드 간의 방향성 결합현상에 대한 빔 진행 기법 설계의 효율성 및 실리카 광도파로 소자 제작을 통한 평가)

  • Jin, Jinung;Chun, Kwon-Wook;Lee, Eun-Su;Oh, Min-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.4
    • /
    • pp.137-145
    • /
    • 2022
  • A directional coupler device, one of the fundamental components of photonic integrated circuits, distributes optical power by evanescent field coupling between two adjacent optical waveguides. In this paper, the design process for manufacturing a directional coupler device is reviewed, and the accuracy of the design results, as seen from the characteristics of the actual fabricated device, is confirmed. When designing a directional coupler device through a two-dimensional (2D) beam-propagation-method (BPM) simulation, an optical structure is converted to a two-dimensional planar structure through the effective index method. After fabricating the directional coupler device array, the characteristics are measured. To supplement the 2D-BPM results that are different from the experimental results, a 3D-BPM simulation is performed. Although 3D-BPM simulation requires more computational resources, the simulation result is closer to the experimental results. Furthermore, the waveguide core refractive index used in 3D-BPM is adjusted to produce a simulation result consistent with the experimental results. The proposed design procedure enables accurate design of directional coupler devices, predicting the experimental results based on 3D-BPM.

Absorption Spectra and Functional Group Contents of Peat and Humus Fractions in Korea (한국산(韓國産) 이탄(泥炭)과 토양부식물(土壤腐植物) 획분(劃分)의 흡수(吸收)스펙트럼 및 관능기(官能基)의 함량(含量))

  • Lim, Sun-Uk;Moon, Moo-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.4
    • /
    • pp.347-352
    • /
    • 1983
  • To characterize humus fractions in soil, visible, ultraviolet and infrared absorption spectra of humic acids in alkaline solutions and hymatomelanic acids in ethanol solutions extracted by Stevenson's method from paddy rice soils, peats, and volcanic ash soils were analyzed. The spectra patterns of both fractions in visible and ultraviolet ranges did not have any peak and the absorbance decreased as the wavelength increased. Visible and ultraviolet spectra of the solutions from all the peats, volcanic ash soils and paddy rice soil were very similar each other but absorbances were slowly declined in the order of volcanic ash soils, peats and mineral paddy soils. The infrared spectra of the two solutions appeared in a typical pattern, showing a few broad peaks. The main absorption bands were in the regions of $3400cm^{-1}$ (hydrogen bonded OH), near $2900cm^{-1}$ (aliphatic CH), $1720cm^{-1}$ (C=O of COOH, C=O of carbonyl), $1625cm^{-1}$ (aromatic C-C conjugated with C=O and/or COO-), $1400-1450cm^{-1}$ (CH stretch), $1200-1250cm^{-1}$ (CaO stretch of phenolic OH or OH-deformation of COOH) and $1050cm^{-1}$. The hymatomelanic acid fractions, however, had spectra that were characterized especially by very distinct absorption at $2900cm^{-1}$ and $1720cm^{-1}$, for aliphatic CH and carbonyl stretching vibration respectively in addition to the weaker bands for COO- or aromatic CH vibration at $1625cm^{-1}$, as compared to humic acid. No differences were noted in the general patterns of the spectograms of both fractions extracted. Analyses of the functional groups revealed little differences between peats and paddy soils, although total acidity and the content of carboxyl groups were decreased in the order of volcanic ash soils, peats and mineral paddy soils.

  • PDF