• 제목/요약/키워드: 광음향

검색결과 64건 처리시간 0.028초

PIV에 의한 가정용보일러용 순환펌프의 내부 유동장 계측 (Measurement of Flow Field in a Domestic Boiler Circulation Pump by PIV)

  • 임유청;김재현;최민선;이영호
    • 동력기계공학회지
    • /
    • 제3권2호
    • /
    • pp.13-19
    • /
    • 1999
  • The purpose of the present experimental study is to apply multi-point simultaneous measurement by PIV(Particle Image Velocimetry) to high-speed flow region within a domestic boiler circulation pump. Two different kinds of flow rate($27{\ell}/min,\;19{\ell}/min$)are selected as experimental condition. A volute casing and Impeller made of transparent Polycarbonate were made for the easy access of the illumination laser via fiber optical line and cylinder lens assembly to the measuring region. A CCD camera is syncronized with AOM to acquire clear original particle images. Optimized cross correlation identification to obtain velocity vectors is implemented by direct calculation of correlation coefficients. The instantaneous and time-mean velocity distribution, velocity profile and kinetic energy are represented quantitatively at the full-scale region for the deeper understanding of the unsteady flow characteristics in a commercial circulation pump.

  • PDF

레이저 유도방식의 실시간 광음향 단층영상 기술 개발과 팬텀이미지 평가 (Development of Laser Induced Real Time Photoacoustic Tomography Imaging System and Phantom Evaluation)

  • 유상훈;신동호;송철규
    • 전기학회논문지
    • /
    • 제61권6호
    • /
    • pp.879-884
    • /
    • 2012
  • Photoacoustic Tomography (PAT) is a promising medical imaging modality by reason of its particularity. It combines optical imaging contrast of optical imaging with the spatial resolution of ultrasound imaging and can demonstrate change of biological feature in an image. For that reason, many studies are in progress to apply this technic for diagnosis. But, real-time PAT system is necessary to confirm a biological reaction induced by external stimulation immediately. Thus, we developed a real-time PAT system using linear array transducer and self-developed Data acquisition board (DAQ) resources, To evaluate the feasibility and performance of our proposed system, two type of phantom test were also performed. As a result of those experiments, the proposed system shows enough performance and confirm its usefulness.

자동차 배출가스 측정을 위한 Photoacoustic Spectroscopy Cell의 3차원 유동장 해석 (Three-Dimensional Fluid Flow Analysis of Photoacoustic Spectroscopy Cell for Measurement of Automotive Exhaust Gas)

  • 김현철;박종호
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.111-118
    • /
    • 2003
  • Recently, environmental damage to urban area becomes serious problem due to the exhaust emissions by increasing the number of vehicle. Especially, exhaust emission from diesel vehicles are blown to be harmful to human health and environment. Photoacoustic Spectroscopy system is very useful technology for simultaneous and continuous measurement of the various components of the automotive exhaust gas. In this study, in order to reduce emission gases from automobile, we tried to develop the measurement system of Photoacoustic Spectroscopy. To improve performance of high sensitive Photoacoustic Spectroscopy system for automotive exhaust emissions, the shape of Photoacoustic Spectroscopy cell was optimized to use the flow analysis. And Exhaust emission data of the 1,500cc gasoline engine was fixed the working fluid. The characteristics of fluid flow for cell were analyzed by various conditions in detail.

PIV에 의한 가정용 온수펌프의 유동장 계측 (Measurement of Flow Field in a Domestic Hot-Water Pump by PIV)

  • 이현;임유청;김재현;이영호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1999년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.264-271
    • /
    • 1999
  • The present experimental study is aimed to investigate the flow characteristics of the high-speed flow field within hot-water pump by PIV(Particle Image Velocimetry). As multi-point simultaneous velocity acquisition, 2-D PIV system based upon the two-frame gray-level cross correlation method is adopted using PC frame-grabber and simple video system. Gated image intensifier CCD Camera to cope with illumination problem is arranged for accurate PIV measurement of high-speed complex flow. The velocity vector distribution, velocity profile, and kinetic energy are represented quantitatively at the full-scale region for the deeper understanding of the unsteady flow characteristics in a pump.

  • PDF

바이오 응용을 위한 초음파 및 광학 기반 다중 모달 영상 기술 (Ultrasound-optical imaging-based multimodal imaging technology for biomedical applications)

  • 이문환;박희연;이경수;김세웅;김지훈;황재윤
    • 한국음향학회지
    • /
    • 제42권5호
    • /
    • pp.429-440
    • /
    • 2023
  • 이 연구는 초음파 광학 영상 기반의 다중 모달 영상 기술에 대한 최신 연구 동향과 응용 가능성에 대해 조사하였다. 초음파 영상은 실시간 영상 기능을 가지고 있으며 인체에 상대적으로 안전한 특성으로 인해 의료 분야에서 다양한 질병의 진단에 사용되고 있다. 그러나 초음파 영상은 해상도가 낮은 한계가 있어 진단 정확도를 향상시키기 위해 다른 광학 영상과의 결합을 통한 다중 모달 영상 기술 개발 연구가 진행되고 있다. 특히 초음파 광학 영상 기반의 다중 모달 영상 기술은 각각의 영상 기법의 장점을 극대화하고 단점을 보완함으로써 질병 진단 정확도를 향상시킬 수 있는 수단으로 사용되고 있다. 이러한 기술은 초음파의 실시간 영상 기능과 광간섭 단층 영상 융합 기술, 초음파 광음향 다중 모달 영상 기술, 초음파 형광 다중 모달 영상 기술, 초음파 형광 시정수 다중 모달 영상 기술 및 초음파 분광 다중 모달 영상 기술 등 다양한 형태로 제안되고 있다. 본 연구에서는 이러한 초음파 광학 영상 기반의 다중 모달 영상 기술의 최신 연구 동향을 소개하고, 의학 및 바이오 분야에서의 응용 가능성을 조사하였다. 이를 통해 초음파와 광학 기술의 융합이 어떻게 진행되고 있는지에 대한 통찰력을 제공하고, 의료 분야에서의 진단 정확도 향상을 위한 새로운 접근 방식에 대한 기반을 마련하였다.

의료용 광음향 단층촬영 원리와 의학적 응용 (Principles and Medical Applications of Biomedical Photoacoustic Tomography)

  • 송철규;유상훈;김도훈
    • 전기학회논문지
    • /
    • 제60권6호
    • /
    • pp.1209-1214
    • /
    • 2011
  • Photoacoustics has been broadly studied in biomedicine, for both human and small animal tissues. Photoacoustics uniquely combines the absorption contrast of light or radio frequency waves with ultrasound resolution. Moreover, it is non-ionizing and non-invasive, and is the fastest growing new biomedical method, with clinical applications on the way. This paper provides a brief recap of recent developments in photoacoustics in biomedicine, from basic principles to applications. The emphasized areas include the new imaging modalities as well as translational research topics. A primary PA application in biomedicine is photoacoustic tomography (PAT). The past decade has seen fast developments in both theoretical reconstruction algorithms and innovative imaging techniques, and PAT has been implemented in imaging different tissues, from centimeter-large breast tumors to several micrometer-large single red blood cels (RBC). PAT now provides structural, functional and molecular imaging. Overall, PA techniques for biomedicine are maturing. They have been widely used to study both animal and human tissues. Recently, more and more research focuses on clinical applications. Commercialized PA systems are expected to be available in the near future, and wide clinical PA applications are foreseen.

관절염 진단용 광음향 이미징 시스템 개발을 위한 선행 연구 (A Preliminary Study on Developing a Photoacoustic Imaging System for Inflammatory Arthritis Diagnosis)

  • 윤종인;박지원
    • The Journal of Korean Physical Therapy
    • /
    • 제22권4호
    • /
    • pp.83-89
    • /
    • 2010
  • Purpose: The goal of this study was to investigate the feasibility for the early diagnosis of inflammatory arthritis by the reconstruction of three-dimensional photoacoustic imaging with a tissue phantom. Methods: Q-switched Nd:YAG laser (l = 532 nm) was applied to a tissue phantom to generate photoacoustic waves, and the acquired photoacoustic signals at different positions around the sample were used to recombine the distribution of the optical absorption and the images were subsequently generated through a reconstruction algorithm. Results: From the acquired photoacoustic signals, the surface andinner core of the phantom was clearly distinguished. Furthermore, the back-projection algorithm was able to reconstruct two-dimensional and three-dimensional photoacoustic images that contained the optical absorption property information of the tissue phantom. Conclusion: The results indicate that the photoacoustic imaging technique has many advantages such as high optical contrast and high acoustic resolution. The acquired images can be used for the early diagnosis of inflammatory arthritis by the structural information obtained from the region of interest.

광간섭 단층 촬영 장치와 광음향 현미경의 결합을 통한 동시 이미지 획득 연구 (Simultaneous Imaging Using Combined Optical Coherence Tomography (OCT) and Photoacoustic Microscopy (PAM))

  • 김세희;이창호;한승훈;강현욱;오정환;김지현;김철홍
    • 대한의용생체공학회:의공학회지
    • /
    • 제34권2호
    • /
    • pp.91-96
    • /
    • 2013
  • In this study, we developed an integrated optical coherence tomography - photoacoustic microscopy (OCT-PAM) system to simultaneously provide optical absorption and scattering information. Two different laser sources, such as a pulsed laser for PAM and a superluminescent diode for OCT, were employed to implement the integrated OCT-PAM system. The performance of the OCT-PAM system was measured by imaging carbon fibers. We then imaged black and white hairs to demonstrate the simultaneous OCT-PAM imaging capabilities. As a result, OCT can produce 3-D images of both black and white hairs, whereas PAM is only able to image the black hair due to strong optical absorption of black hair.

음향 매질의 추가질량 효과를 고려한 광음향 영상용 초소형 압전 기반 초음파 트랜스듀서의 개발 (Development of a Piezoelectric Micro-machined Ultrasonic Transducer for Photoacoustic Imaging that Accounts for the Added Mass Effect of the Acoustic Medium)

  • 안홍민;문원규
    • 센서학회지
    • /
    • 제29권1호
    • /
    • pp.33-39
    • /
    • 2020
  • Typically, photoacoustic images are obtained in water or gelatin because the impedance of these mediums is similar to that of the human body. However, these acoustic mediums can have an additional mass effect that changes the resonance frequency of the transducer. The acoustic radiation impedance in air is negligible because it is very small compared to that of the transducer. However, the high acoustic impedance of mediums such as the human body and water is quite large compared to that of air, making it difficult to ignore. Specifically, in a case where the equivalent mass is very small, such as with a micro-machined ultrasound transducer, the additional mass effects of the acoustic medium should be considered for an accurate resonance frequency design. In this study, a piezoelectric micro-machined ultrasonic transducer (pMUT) was designed to have a resonance frequency of 10 MHz in the acoustic medium of water, which has similar impedance as the human body. At that time, the resonance frequency of the pMUT in air was calculated at 15.2 MHz. When measuring the center displacement of the manufactured pMUT using a laser vibrometer, the resonance frequencies were measured as 14.3-15.1 MHz, which is consistent with the finite element method (FEM) simulation results. Finally, photoacoustic images of human hair samples were successfully obtained using the fabricated pMUT.

색소 흡착 산화아연 감광체의 전자사진 특성에 관한 연구 (The Application for Electrophotographic Photoreceptors of Zinc Oxide Adsorbed Copper Phthalocyanine and Sunfast Yellow)

  • 허순옥;김영순
    • 대한화학회지
    • /
    • 제38권9호
    • /
    • pp.632-639
    • /
    • 1994
  • 가시부 영역에서 산화아연을 광증감시키기 위해 copper phthalocyanine(CuPc)과 sunfast yellow(SY)를 산화아연 분말에 이층 흡착시켰다. 산화아연에 대한 CuPc의 흡착상태를 알기 위하여 ZnO/CuPc의 광음향, IR 및 라만 스펙트럼을 측정한 결과, CuPc는 $\alpha$형 및 $\beta$형의 결정 특성을 유지한 이합체 또는 분자들의 집합체 상태로 산화아연에 흡착된다는 것을 알았다. 산화아연에 CuPc 및 SY를 순차적으로 이층 흡착시킨계(ZnO/CuPc/SY)는 SY를 먼저 흡착시킨 ZnO/SY/CuPc계보다 광기전력이 높게 나타났고, $ZnO/\beta-CuPc/SY$$ZnO/\alpha-CuPc/SY$보다 광기전력이 높게 나타났다. $ZnO/\beta-CuPc/SY$의 전자사진 감도를 측정하였더니 630 nm에서 $$S_{1/2}=2.99{\times}10^{-2}(erg/cm^2)^{-1}$ 이었다.

  • PDF