• Title/Summary/Keyword: 광역 변성작용

Search Result 67, Processing Time 0.025 seconds

SHRIMP Zircon U-Pb Ages of Basement Rocks in the Danyang National Geopark (단양 국가지질공원 기반암류의 SHRIMP 저어콘 U-Pb 연령)

  • Cheong, Wonseok;Han, Giun;Kim, Taehwan;Aum, Hyun Woo;Kim, Yoonsup
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.339-347
    • /
    • 2020
  • We carried out the U-Pb age dating of zircon from basement rocks in the southern part of the Danyang National Geopark. Two migmatitic gneisses composed of biotite±sillimanite±garnet+feldspar+quartz were dated. Leucosomes in the samples were clearly distinguished from their melanosomes. The U-Pb isotopic compositions of zircon from sillimanite- and garnet-bearing migmatitic samples were measured using a secondary ion microprobe, yielding metamorphic ages, 1870±10 Ma (2σ)와 1863±6 Ma (2σ), respectively. 1.87~1.86 Ga metamorphic ages are consistent with those of the Paleoproterozoic low-P and high-T regional metamorphism (1.87~1.85 Ga) in the Yeongnam Massif. The maximum depositional age based upon the apparent 207Pb/206Pb ages of detrital zircon in the samples was estimated as 2.06 Ga, and thus sedimentation age of the protolith of the migmatitic gneisses ranges between 2.06 and 1.87 Ga.

Geochronological Study on Gyeonggi Massif in Korea Peninsula by the Rb-Sr Method (경기편마암 복합체의 Rb-Sr 연대측정연구)

  • Seung Hwan Choo;Dong Hak Kim;Won Mok Jae
    • Nuclear Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.23-32
    • /
    • 1983
  • In the previous studies on Rb-Sr geochronology, Gyeonggi Massif was known as the oldest rock in Korea Peninsula but the detailed sequence of geochronology was not studied yet. In the present study, some of whole rock isochrons considered here can be geochronologically grouped as follows: The ages of leucocratic gneisses at Yangpyeong, and augen and banded gneisses at Anyang show 2200 to 2300 m.y. which may represent the time of the Massif formation or an igneous intrusion. The age of the granite gneiss distributed in Yangpyeong area shows about 1400 m.y., which apparently represents the intrusion time of the gneiss. The age of the extremely altered metamorphic rock shows about 500 m.y., which may represent the time of a Caledonian orogenic event probably with hydrothermal activities. The other episodic ages of 800 to 900 m.y. which was widely observed through the Massif, may represent the ages of Precambrian igneous activities or regional metamorphism in the Massif. It seems to be reasonable that the ages of 120 to 270 m.y. show the times of Mesozoic and Late Palaeozoic Plutonisms in the Massif.

  • PDF

Genetic Environment of the Pailou Magnesite Deposit in Dashiqiao Belt, China, and Its Comparison with the Daeheung Deposit in North Korea (중국 다스챠오벨트 팰로우 마그네사이트 광상의 생성환경 및 북한 대흥 광상과의 비교)

  • Im, Heonkyung;Shin, Dongbok;Yoo, Bong-chul
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.767-785
    • /
    • 2021
  • World-class magnesite deposits are developed in the Dashiqiao mineralized district of the Jiao-Liao-Ji Belt in China. This belt extends to the northern side of the Korean Peninsula and hosts major magnesite deposits in the Dancheon region of North Korea. Magnesite ores from the Pailou deposits in the Dashiqiao district is classified into pure magnetite, chlorite-magnetite, chlorite-talc-magnetite, and dolomite groups depending on the constituent minerals. According to the result of petrographic study, magnesite was formed by the alteration of dolomite, and, talc, chlorite, and apatite were produced as late-stage alteration minerals that replaced the magnesite. Fluid inclusions observed in magnesite are a liquid-type inclusion, with a homogenization temperature of 121-250 ℃ and a salinity of 1.7-22.4 wt% NaCl equiv. The chlorite geothermometer, indicating the temperature of hydrothermal alteration, is 137~293 ℃, slightly higher than the homogenization temperature of fluid inclusions, and the pressure is calculated to be less than 3.2 kb. For magnesite mineralization in the study area, the initially formed-dolomite was subjected to replacement by Mg-rich fluid to form a magnesite ore body, and then it was enriched through regional metamorphism and hydrothermal alteration. It seems that altered minerals such as talc were crystallized by Si and Al-rich late-stage hydrothermal fluids. These results are similar to the genetic environments of the Daeheung deposit, a representative magnesite deposit in North Korea, and it is believed that the two deposits went through a similar geological and ore genetic process of magnesite mineralization.

Characteristics of Fracture Systems in Southern Korea (우리나라 단열구조의 특성)

  • 김천수;배대석;장태우
    • The Journal of Engineering Geology
    • /
    • v.13 no.2
    • /
    • pp.207-225
    • /
    • 2003
  • According to the data analysis of the regional fracture systems in southern Korea, the fracture orientations show three dominant sets : NNE, NW and WNW. A NNE set is the most abundant and includes most of the largest fractures. The highest fracture density is shown in the Taebaegsan mineralized area corresponding to Ogchon nonmetamorphic belt and the lowest one in the southwestern area of southern Korea. In addition, the density is higher in nonmetamorphic sedimentary rocks such as Choseon Supergroup. Pyeongan Supergroup, Daedong Supergroup and Kyeongsang Supergroup than in Precambrian basements and Jurassic granites. The regional fractures in southern Korea can be classified into four orders designated $F_1,{\;}F_2,{\;}F_3{\;}and{\;}F_4${\;}and{\;}F_4$ on the basis of their trace length. It is quite significant that fractures of each order are self-similar with respect to orientation and the combined fracture length distribution indicates a power-law distribution with an exponent of -2.04. As fractures were analyzed based on the tectonic provinces, Gyeonggj Massif and Kyeongsang Basin have all orders of fractures from $F_1$ to $F_4$. Most of the large scale faults may be ascribed to the products of slip accumulation through multiple deformation. Others besides $F_1$ fractures are thought to be evenly distributed through the whole area of southern Korea.

Review on the Triassic Post-collisional Magmatism in the Qinling Collision Belt (친링 충돌대의 트라이아스기 충돌 후 화성작용에 대한 리뷰)

  • Oh, Chang Whan;Lee, Byung Choon;Yi, Sang-Bong;Zhang, Cheng Li
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.293-309
    • /
    • 2014
  • The Qinling-Dabie-Sulu-Hongseong-Odesan collision belt was formed by the collision between the North China and South China Cratons during late Permian to Triassic. During the collision, Triassic post-collision igneous rocks regionally intruded in the Qinling and the Hongseong-Odesan collision belts which represent the western and eastern ends of the collision belt, respectively. However, no and minor Triassic post-collision igneous activities occur in the Dabie and Sulu belts respectively. The peak metamorphic pressure conditions along the Qinling-Dabie-Sulu-Hongseong-Odesan belt indicate that the slab break-off occurred at the depth of ultra-high pressure (UHP) metamorphic condition in the Dabie and Sulu belts and at the depths of high pressure (HP) or high pressure granulite (HPG) metamorphic condition in the Qinling and Hongseong-Odesan belts. In the Dabie and Sulu belts the heat supply from the asthenospheric mantle through the gab formed by slab break-off could not cause an extensive melting in the lower continental crust and lithospheric mantle directly below it due to the very deep depth of slab break-off. On the other hand, in the Qinling and Hongseong-Odesan belts, shallower slab break-off caused the emplacement of regional post collision igneous rocks. The post-collision igneous rocks occur in the area to the north of the Mianlu Suture zone in the western Qinling belt and crop out continuously eastwards into the areas to the north of the Shangdan Suture zone in the eastern Qinling belt through the areas within the South Qinling block. This distribution pattern of post collision igneous rocks suggests that the Triassic collision belt in the Mianleu Suture zone may be extended into the Shangdan Suture zone after passing through the South Qinling block instead into the boundary between the South Qinling block and the South China Craton.

Mineralogical Characteristics of Calcite observed in the KAERI Underground Research Tunnel (고준위폐기물 지하처분연구시설(KURT)에서 관찰되는 방해석의 광물학적 특징)

  • Lee, Seung-Yeop;Baik, Min-Hoon;Cho, Won-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.239-246
    • /
    • 2006
  • KAERI Underground Research Tunnel (KURT) was recently constructed through the site investigation from the yea. of 2003 at KAERI site, Dukjin-dong, Yuseong-gu, Daejeon city. The geo-logic setting of the site has been slightly metamorphosed. There are small fractures developed in the rock and several kinds of secondary filling minerals exist in the fractures. We examined mineralogical characteristics of fracture-filling calcite, which is not only largely distributed, but also can significantly affect the radionuclides migration. The calcite is found along fractures like other secondary minerals, forming thick veins in part. Most calcite-filled fractures contain quartz, iron oxides, and dolomite as minor minerals. The calcite crystals show an characteristic appearance with an uniformly oriented growth, coated with goethite on the edge and the etch-pit sites of their surface. Some calcite crystals have been newly formed by the precipitation of elements dissolved from the tunnel shotcrete wall, and their morphology changed according to the chemistry and flow of groundwater. The calcite can modify the groundwater chemistry and significantly affect the sorption behavior of radionuclides. The characteristic crystal structure and surface morphology of the calcite examined in the KURT site will be used as important basic data for the radionuclide migration experiment in the future.

Petrological Study on the Ultramafic Rocks in Choongnam Area (충남지역 초염기성암체의 암석학적 연구)

  • Woo, Young-Kyun;Suh, Man-Cheol
    • Journal of the Korean earth science society
    • /
    • v.21 no.3
    • /
    • pp.323-336
    • /
    • 2000
  • Ultramafic rocks in Choongnam area are mainly serpenitinites which are parent rock of talc and asbestos ore deposits. About 10 $^{\circ}$ NNE-trending parallel serpentinites masses occur as discontineous isolated lenticular intrusive bodies in Precambrian gneiss complex between Hongseong-Kwangcheon line and Onyang-Cheongyang line. The sizes of serpentinites vary from several centimeters to 1 kilometer in width and from several meters to 5 kilometers in length. The serpentinites show high SiO$_2$(39.99wt.% in average), MgO(38.46wt % in average), Cr(>1011ppm), Ni(>1660ppm), and Co(>80ppm). Most serpentinites contain serpentine more than 50%. Some serpentines contain original minerals such as olivine, pyroxene and chromite. Also, serpentinites body may contain a little serpentinized peridotite, and some talc and asbestos ore deposits. The original rocks of the serpentinites interpreted as Alpine type ultramafic rocks, and dunite and/or harzburgite which were originated from slightly depleted upper mantle(30${\sim}$40km deep), and emplaced in the crust through the large fault zones. It seems that main serpentinization from the original rocks was occurred during greenschist and/or amphibolite facies regional metamorphism in Choongnam area.

  • PDF

Occurrence and Chemical Composition of W-Bearing Rutile from the Unsan Au Deposit (운산 금 광상에서 산출되는 함 텅스텐 금홍석의 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.2
    • /
    • pp.115-127
    • /
    • 2020
  • The Unsang gold deposit has been one of the three largest deposits (Daeyudong and Kwangyang) in Korea. The deposit consists of Au-bearing quartz veins filling fractures along fault zones in Precambrian metasedimentary rock and Jurassic Porphyritic granite, which suggests that it might be an orogenic-type. Based on its mineral assemblages and quartz textures, quartz veins are classified into 1)galena-quartz, 2)pyrrhotite-quartz, 3)pyrite-quartz, 4)pegmatic quartz, 5)muscovite-quartz, and 6)simple quartz vein types. The pyrite-quartz vein type we studied shows the following alteration features: sericitization, chloritization, and silicification. The quartz vein contains minerals including white quartz, white mica, chlorite, pyrite, rutile, calcite, monazite, zircon, and apatite. Rutile with euhedral or medium aggregate occur at mafic part from laminated quartz vein. Two types of rutile are distinguishable in BSE image, light rutile is texturally later than dark rutile. Chemical composition of rutile has 89.69~98.71 wt.% (TiO2), 0.25~7.04 wt.% (WO3), 0.30~2.56 wt.% (FeO), 0.00~1.71 wt.% (Nb2O5), 0.17~0.35 wt.% (HfO2), 0.00~0.30 wt.% (V2O3), 0.00~0.35 wt.% (Cr2O3) and 0.04~0.25 wt.% (Al2O3), and light rutile are higher WO3, Nb2O5 and FeO compared to the dark rutile. It indicates that dark rutile and light rutile were formed at different stage. The substitution mechanisms of dark rutile and light rutile are suggested as followed : dark rutile [(V3+, Cr3+) + (Nb5+, Sb5+) ↔ 2Ti4+, 4Cr3+ (or 2W6+) ↔ 3Ti4+ (W6+ ↔ 2Cr3+), V4+ ↔ Ti4+], light rutile [2Fe3+ + W6+ ↔ 3Ti4+, 3Fe2+ + W6+ ↔ Ti4+ + (V3+, Al3+, Cr3+) +Nb5+], respectively. While the dark rutile was formed by cations including V3+, V4+, Cr3+, Nb5+, Sb5+ and W6+ by regional metamorphism of hostrock, the postdating light rutile was formed by redistribution of cations from predating dark rutile and addition of Fe2+ and W6+ from Au-bearing hydrothermal fluid during ductile shear.

Occurrence and Reserve Evaluation of the Poongwon Quartzite Deposit in Geochang, Kyongsangnam Province (경남 거창 풍원 규석광상의 산상과 매장량 평가)

  • Yang Kyounghee;Yun Sung-Hyo
    • Economic and Environmental Geology
    • /
    • v.39 no.1 s.176
    • /
    • pp.1-7
    • /
    • 2006
  • This paper attempts to locate and define a quartzite deposit in Geochang, Kyongsangnam Province in order to establish its commercial viability. The quartzite deposit (Poongwon Mine) occurs as lens or boudinage at the contact between mica schist of the Deogyusan formation and granite gneiss. During Precambrian, regional metamorphism and granitization may have caused the formation ot quartzite layers through recrystallization and rearrangement of silica components derived from older sedimentary rocks, probably chert and/or sandstone. The deposit is composed of fine-grained milky, or light yellowish quartz showing weak laminations with fairly dense and rough appearance in outcrop. It reaches about $60\;m(height)\times140\;m(length)\times35m(width)$ with attitude of $N57^{\circ}E-N8^{\circ}4E\;and\;51^{\circ}-60^{\circ}NW$. The average grade of the quartzite samples is $SiO_2=94.4\;wt\%,\;A1_2O_3=3.3\;wt\%,\; Fe_2O_3=0.8\;wt\%,\;K_2O=0.7\;wt\%$, which can be used for foundry, constructional materials, or concrete making. The proved reserve was estimated as 200,811 tonnage.

Petrology and Geochemistry of Jurassic Daejeon and Nonsan Granitoids in the Ogcheon Fold Belt, Korea (옥천(沃川) 변성대(變成帶)에 분포하는 쥬라기(紀) 대전(大田) 및 논산(論山) 화강암류(花崗岩類)의 암석지화학적(岩石地化學的) 연구(硏究))

  • Hong, Young Kook
    • Economic and Environmental Geology
    • /
    • v.17 no.3
    • /
    • pp.179-195
    • /
    • 1984
  • The Jurassic Daejeon and Nonsan granitoids are "S-type" syntectonic calc-alkaline two-mica monzogranite and granodiorite, respectively. With evidences of high CaO, $Al_2O_3$, LIL/HFS elements, total REE, (Ce/Yb)N and initial ($^{87}Sr/^{88}Sr$) ratio, and no significant Eu anomaly, the primary magmas for the Daejeon and Nonsan granitic rocks are derived from partial melting of the Precambrian granulite (e.g. grey gneisses). But those Jurassic granitoids crystallised from different chemical characteristics of parental magmas which is mainly due to varying degree of partial melting of the granulite (crustal anatexis). The absence of significant anomalous Eu($Eu/Eu^*=O.82{\sim}1.00$) in the Daejeon and Nonsan granitoids could indicate that feldspars, mainly plagioclase, did not separate from the magmas. The parental hydrous magmas could not rise appreciably above their source region before crystallisation. The Jurassic granitoids may be resulted by closing-collision situation and belong to the Hercynotype (Pitcher 1979) such as compressive ductile regime of an intracontinental orogen.

  • PDF