• Title/Summary/Keyword: 광산배수

Search Result 197, Processing Time 0.034 seconds

Use of Light Emitting Diode for Enhanced Activity of Sulfate Reducing Bacteria in Mine Drainage Treatment Process Under Extreme Cold (혹한기 광산배수 처리 공정 내 황산염 환원 박테리아의 활성 증진을 위한 발광다이오드의 이용 제안)

  • Choi, Yoojin;Choi, Yeon Woo;Lee, An-na;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.50 no.3
    • /
    • pp.251-256
    • /
    • 2017
  • This study presents measures to enhance the efficiency of Successive Alkalinity Producing Systems(SAPS), a natural biological purification method that prevents environmental pollution arising from the release of Acid Mine Drainage(AMD) from abandoned mines into rivers and groundwater. The treatment of AMD using SAPS is based on biological processing technology that mostly involves sulfate reducing bacteria(SRB). It has been proven effective in real-world applications, and has been employed in various projects on the purification of AMD. However, seasonal decrease in temperature leads to a deterioration in the efficiency of the process because sulfate-reducing activity is almost non-existent during cold winters and early spring even if SRB is able to survive. Against this backdrop, this study presents measures to enhance the activity of the SRB of the organic layer by integrating light emitting diode(LED)s in SAPS and to maintain the active temperature using LEDs in cold winters. Given that mine drainage facilities are located in areas where power cannot be easily supplied, solar cell modules are proposed as the main power source for LEDs. By conducting further research based on the present study, it will be possible to enhance the efficiency of AMD treatment under extreme cold weather using solar energy and LEDs, which will serve as an environmentally-friendly solution in line with the era of green growth.

Environmental Pollution and Reclamation in the Abandoned Mines in Korea (국내 폐 광산 환경오염 실태 및 처리 현황)

  • Cheong Young-Wook;Min Jeong-Sik
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2001.09a
    • /
    • pp.75-89
    • /
    • 2001
  • There are 334 coal mines and about 900 metal mines abandoned. The environmental problems such as acid mine drainage from adits etc. and the subsidence has occurred in the abandoned mines. In addition, soil has been contaminated by tailings. According to analysis of mine drainages, some of them from adits in the abandoned coal and metallic mines were acidic and polluted by heavy metals. Especially, water quality of coal mine drainages were different by areas. Treatment of mine drainage by conventional chemical treatment has the drawback because the operating cost is very expensive. The treatment system used in mine drainage is the natural treatment system such as anoxic limestone drain in adits and the constructed wetland. The method of reclamation for abandoned waste rocks and tailings impoundments are mainly landfilling.

  • PDF

Analysis of Seasonal, Distance Variation of Heavy Metals for Geopung Mine Basin (거풍광산 유역의 계절별.거리별 중금속 거동특성 분석)

  • Pak, Gi-Jung;Jung, Min-Jae;Hong, Ui-Jeon;Kim, Young;Yoon, Jae-Yong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05a
    • /
    • pp.352-355
    • /
    • 2012
  • 산성광산배수(Acid Mine Drainage)는 낮은 pH, 높은 Sulfate, 상대적으로 높은 Fe, Al, Mn 등의 중금속 농도가 특징으로 다양한 오염인자를 가지고 있으며, 각각의 오염인자가 오염에 미치는 영향이 매우 다양하게 나타난다. 특히 산성광산배수는 유역 내 시각적, 생태학적 문제를 일으켜 많은 환경오염을 야기하고 있으며, 많은 중금속을 용출시켜 주변 하천의 생태계를 파괴하게 된다. 이러한 산성광산 배수에 의한 환경피해의 심각성은 이미 국 내외에서 널리 인식되고 있으며, 이를 효과적으로 관리하기 위해서 산성광산배수의 거동 매커니즘 조사에 대한 연구가 필요하다. 따라서 본 연구에서는 금강수계 거풍광산 유역 장연천을 대상으로 하여 광산주변 표토, 계절별 거리별 하천수 및 저질토에서의 오염특성을 조사하고 그 영향을 평가하고자 하였다. 연구결과 하천수의 경우 대부분의 중금속 농도가 오염물질의 축적이 가장 많을 것으로 예상되는 5월에 높은 농도를 보였으며, 강우가 시작되는 6월, 7월까지 건기에 비해 높은 농도를 유지하다가, 강우가 지속됨에 따라 희석되어 농도가 감소되는 현상을 나타냈다. 저질토의 경우도 비슷한 양상을 타나냈다. 거리별 영향의 경우 하천수는 산성광산배수가 유입되는 상류에서 지속적으로 높은 농도를 나타냈으나, 저질토의 경우 건기에는 비슷한 양상을 나타내다가 우기에 강우의 영향으로 하천 하류에서 전체적으로 농도가 높아지는 경향을 나타냈다.

  • PDF

Behaviors of Trace Elements Caused by the Precipitation of Minerals in Acid Mine Drainage (산성광산배수에서 광물의 침전에 따른 미량 원소의 거동)

  • Yoon, Young Jin;Lee, Ji Eun;Bang, Sang Je;Baek, Young Doo;Kim, Yeongkyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.173-182
    • /
    • 2018
  • The precipitation and phase transformation processes of iron minerals in acid mine drainage have a great influence on the behavior of trace elements in drainage. However, it is not easy to accurately trace these processes in natural environments, and therefore, most studies have carried out in the laboratory to obtain the information on the precipitation and transformation of those minerals. In this study, the precipitation of minerals and the changes of trace elements in drainage water were investigated at different pH values in actual acid mine drainage collected from the Dalsung mine. The amount of some precipitated minerals was not enough for the mineral identification. However, from the minerals identified, amorphous minerals were formed first, and then goethite was precipitated probably from schwertmannite. When the pH of the sample was high (10), amorphous phases of minerals were still observed at even high pH (pH 10). With increasing time, the pH values decreased by precipitation and transformation of minerals. All the elements showed low concentrations at high pH (8, 10), which might be due to the precipitation of minerals at high pH and the effect of surface charge, and the concentrations of elements gradually increased with time. In the case of sulfur, it also increased in water due to the transformation of schwertmannite to goethite.

Evaluation of Manganese Removal from Acid Mine Drainage by Oxidation and Neutralization Method (산화법과 중화법을 이용한 산성광산배수 내 망간 제거 평가)

  • Kim, Bum-Jun;Ji, Won-Hyun;Ko, Myoung-Soo
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.687-694
    • /
    • 2020
  • Two oxidizing agents (KMnO4, H2O2), and one neutralizing agent (NaOH) were applied to evaluate Mn removal in mine drainage. A Mn2+ solution and artificial mine drainage were prepared to identify the Fe2+ influence on Mn2+ removal. The initial concentrations of Mn2+ and Fe2+ were 0.1 mM and 1.0 mM, respectively. The injection amount of oxidizing and neutralizing agents were set to ratios of 0.1, 0.67, 1.0, and 2.0 with respect to the Mn2+ mole concentration. KMnO4 exhibited a higher removal efficiency of Mn2+ than did H2O2 and NaOH, where approximately 90% of Mn2+ was removed by KMnO4. A black MnO2 was precipitated that indicated the oxidation of Mn2+ to Mn4+ after an oxidizing agent was added. In addition, MnO2 (pyrolusite) is a stable precipitate under pH-Eh conditions in the solution. However, relatively low removal ratios (6%) of Mn2+ were observed in the artificial mine drainage that included 1.0 mM of Fe2+. The rapid oxidation tendency of Fe2+ as compared to that of Mn2+ was determined to be the main reason for the low removal ratios of Mn2+. The oxidation of Fe2+ showed a decrease of Fe concentration in solution after injection of the oxidizing and neutralizing agents. In addition, Mn7+ of KMnO4 was reduced to Mn2+ by Fe2+ oxidation. Thus, the concentrations of Mn increased in artificial mine drainage. These results revealed that the oxidation method is more effective than the neutralization method for Mn removal in solution. It should also be mentioned that to achieve the Mn removal in mine drainage, Fe2+ removal must be conducted prior to Mn2+ oxidation.

Study on Determination of Design Factor of Bioreactor for Sulfate Reduction in Mine Drainage (광산배수 내 황산염 저감을 위한 생물반응기의 설계인자 도출 연구)

  • Kim, Kang-Ho;Kang, Chan-Ung;Kim, Sun-Joon;Kim, Tae-Heok;Ji, Won-Hyun;Jang, Hang-Seok;Park, Hyun-Sung
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.55 no.6
    • /
    • pp.527-537
    • /
    • 2018
  • Column tests of a sulfate reducing bacteria (SRB) bioreactor were conducted to determine the design factors for sulfate-rich mine drainage. Various substrates were applied to the bioreactor, including cow manure and its mixture with a mushroom compost, with rice straw and limestone as subsidiary materials. This procedure provided a removal efficiency of up to 82% of the total sulfur with the mixture of cow manure (70%), mushroom compost (10%) and rice straw (20%), and higher efficiencies were observed after 2 days of retention time. In the downflow condition of the flow direction, oxygen supply and re-oxidation of the sulfates occurred, causing a decrease in sulfate removal efficiency. The addition of an inorganic sludge containing heavy metals, which was intended for production of metal-sulfides in the bioreactor, had a negative effect on the long-term operation owing to arsenic release and toxicity to the SRB. The results thus show that a bioreactor using a mixed substrate with cow manure and operating in the downflow direction could reduce sulfates and total dissolved sulfur content; this process confirms the applicability of the SRB bioreactor to sulfate-rich saline drainage.

Feasibility Study on the Multi-functional Ceramics using Industrial By-product for Treatment of Acid Mine Drainage (산성광산배수 처리를 위한 산업부산물 소재 다기능성 세라믹의 적용 가능성 연구)

  • Lee, Yeong-Nam;Yim, Soo-Bin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.12
    • /
    • pp.25-36
    • /
    • 2017
  • This research was conducted to investigate the removal characteristics of heavy metals and sulfate ion from acid mine drainage (AMD) by multi-functional zeolite-slag ceramics (ZS ceramics), in which natural zeolite and converter slag were mixed and calcined at high temperature. The batch test showed that the removal efficiency of heavy metals by pellet-type ZS ceramics increased as the mixing weight ratio of converter slag to natural zeolite increased. The optimal mixing ratio of natural zeolite to converter slag for the removal of heavy metals and sulfate ion from AMD was observed to be 1:2~1:3. The adequate calcination temperature and time of ZS ceramics for the treatment of AMD were found to be $600{\sim}800^{\circ}C$ and 2 hours, respectively. The removal test of heavy metals and sulfate ion from AMD by the ZS ceramics prepared in optimal condition exhibited very high removal efficiencies close to 100% for all heavy metals (Al, As, Cd, Cu, Fe, Mn, Pb, Zn) and 77.1% for sulfate ion. The experimental results in this study revealed that the ZS ceramics could function as an effective agent for the treatment of AMD.

Discharge Characteristics of Heavy Metals in Acid mine Drainage from the Abandoned Ilgwang Mine (일광 폐광산 갱내에서 유래된 산성광산배수의 중금속 유출특성)

  • Kang, Dong-Hwan;Kwon, Byung-Hyuk;Yu, Hun-Sun;Kim, Sun-Ok
    • The Journal of Engineering Geology
    • /
    • v.20 no.1
    • /
    • pp.79-87
    • /
    • 2010
  • Field water qualities (temperature, pH, Eh, EC, DO) was monitored by 6 times March to September 2009 on background water (BW) and acid mine drainage (AMD0, AMD1, AMD2 and AMD3 points), and flow rate was measured on AMD0 point. Acid mine drainage flowed out from abandoned Ilgwang mine were high acid waters that lower than pH 3, and Eh component was ranged 400 to 600 mV. EC measured on acid mine drainage were higher over 10 times than background water, DO component was increased by reaction on the air during the water flow from AMD0 point to AMD4 point. Heavy metal concentrations in acid mine drainage were ordered Fe > Cu > Zn > Mn > As > Cd, and Fe concentration was highest for 81.870~474.30 mg/L. Monitoring periods measured maximum concentrations of heavy metals were May for As and Cd, June for Fe, July for Cu, Zn and Mn. The periods measured minimum concentrations were monitored April for Cd and Mn, September for Fe, Cu, Zn and As. Discharge mass of heavy metal components were calculated 53.44 kg for Fe, 6.25 kg for Cu, 5.26 kg for Zn, 2.13 kg for Mn, 0.14 kg for As and 0.04 kg for Cd, respectively. Total discharge mass of heavy metal components were calculated 67.26 kg for 1 day, and Fe component was taken 79% of total mass.