Browse > Article

Discharge Characteristics of Heavy Metals in Acid mine Drainage from the Abandoned Ilgwang Mine  

Kang, Dong-Hwan (Geo-Sciences Institute, Pukyong National University)
Kwon, Byung-Hyuk (Department of Atmospheric Environmental Science, Pukyong National University)
Yu, Hun-Sun (Dong-eui Institute of Technology Dong-eui Analysis Center)
Kim, Sun-Ok (Department of Energy Resources Engineering, Pukyong National University)
Publication Information
The Journal of Engineering Geology / v.20, no.1, 2010 , pp. 79-87 More about this Journal
Abstract
Field water qualities (temperature, pH, Eh, EC, DO) was monitored by 6 times March to September 2009 on background water (BW) and acid mine drainage (AMD0, AMD1, AMD2 and AMD3 points), and flow rate was measured on AMD0 point. Acid mine drainage flowed out from abandoned Ilgwang mine were high acid waters that lower than pH 3, and Eh component was ranged 400 to 600 mV. EC measured on acid mine drainage were higher over 10 times than background water, DO component was increased by reaction on the air during the water flow from AMD0 point to AMD4 point. Heavy metal concentrations in acid mine drainage were ordered Fe > Cu > Zn > Mn > As > Cd, and Fe concentration was highest for 81.870~474.30 mg/L. Monitoring periods measured maximum concentrations of heavy metals were May for As and Cd, June for Fe, July for Cu, Zn and Mn. The periods measured minimum concentrations were monitored April for Cd and Mn, September for Fe, Cu, Zn and As. Discharge mass of heavy metal components were calculated 53.44 kg for Fe, 6.25 kg for Cu, 5.26 kg for Zn, 2.13 kg for Mn, 0.14 kg for As and 0.04 kg for Cd, respectively. Total discharge mass of heavy metal components were calculated 67.26 kg for 1 day, and Fe component was taken 79% of total mass.
Keywords
Abandoned mine; AMD; Heavy metal; Discharge mass;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 McCarty, D. K., Moore, J.N. and Marcus, W. A., 1998, Mineralogy and trace element association in an acid mine drainage iron oxide precipitate; comparison of selective extraction. Appl. Geochim., 13, 165-176.   DOI   ScienceOn
2 Southam, G. and Beveridge, T. J., 1992, Enumeration of thiobacilli with pH neutral and acidic mine tailing and their role in the development of secondary mineral soil, Applied Environ. Microbilol., 58, 1283-1288.
3 Webster, J. G., Swedlund, P. J. and Webster, K. S., 1998, Trace metal adsorption onto an acid mine drainage Fe (III) oxyhydroxysulphate. Environ. Sci. Technol., 32, 1361-1368.   DOI   ScienceOn
4 Garrels, R. M. and Christ, C. L., 1965, Solutions, minerals, and equilibria. Harper and Row, New York, 450p.
5 Hammarstrom, J. M., Seal II, R. R., Meier, A. L. and Kornfeld, J. M., 2005, Secondary sulfate minerals associated with acid drainage in the eastern US: recycling of metals and acidity in surficial environments. Chemical Geology, 215, 407-431.   DOI   ScienceOn
6 Jamber, J. L., Blowes, D. W. and Ptacek, C. J., 2000, Mineralogy of mine wastes and strategies for remediation, European Mineralogical Union Notes in Mineralogy, 2, 255-290.
7 Jerz J. K. and Rimstidt, J. D., 2003, Efflorescent iron sulfate minerals: paragenesis, relative stability, and environmental impact. American Mineralogist, 88, 1919-1932.   DOI
8 Lindsay, W. L., 1979, Chemical equilibria in soils, John Wiley and Sons, New York, Chichester, 449p.
9 최정찬, 이민희, 2004, 천연물질을 이용한 AMD 및 ARD 내의 중금속 저감효율 실내실험 결과 비교 연구, 자원환경지질학회지, 37(1), 133-142.   과학기술학회마을
10 Chapman, B. M., Jones, D. R. and Jung, R. F., 1983, Processes controlling metal ion attenuation in acid mine drainage stream. Geochim. Cosmochim., Acta, 47, 1957-1973.   DOI   ScienceOn
11 Davis, B. S., 1995, The geomicrobiology of the oxic zone of two base metal mines tailings impoundments: The Kidd Creek mine and the Kam Kotia mine sites, M. Xc. thesis, Univ. Guelph. Ontario, Canada, 486p.
12 이민희, 이예선, 양민준, 김종성, 왕수균, 2009, 폐광산 주변 중금속 오염 농경지 토양 복원을 위한 석회(CaO)와 석회암(CaCO3)의 안정화 효율 규명, 자원환경지질학회지, 41(2), 201-210.   과학기술학회마을
13 이기형, 2002, 일광폐광산 오염방지사업 시행사례, 2002년 광해방지 및 기술 심포지엄, 한국지질자원연구원, 1-15.
14 이민희, 이정산, 차종철, 최정찬, 이정민, 2004, 토양 세척법과 석회를 첨가한 토양 안정화 공법을 이용한 폐광산 주변 비소 오염 토양 및 하천 퇴적토 복원, 자원환경지질학회지, 37(1), 121-131.   과학기술학회마을
15 이평구, 조호영, 염승준, 2004, 폐광산지역의 오염특성 조사와 평가를 위한 지구화학적 접근방법, 자원환경지질학회지, 37(1), 35-48.   과학기술학회마을
16 최정찬, 2005, 인회석 및 생선뼈를 이용한 일광광산 AMD 처리 현장실험, 자원환경지질학회지, 38(5), 563-570.   과학기술학회마을
17 박용하, 서경원, 2005, 휴폐금속광산지역의 토양오염관리 방안, 한국환경정책평가연구원, 정책보고서(KEI 2005 WO-03), 89p.
18 안윤희, 황진연, 김근수, 1999, 일광광산 폐갱 유출수에 의해 형성된 바이오메트의 생광물학적 연구, 한국광물학회지, 12(1), 32-42.
19 강민주, 이평구, 최상훈, 2007, 인대광산 지역 광산배수에 영향을 받은 하천에서 미량원소의 계절적인 수질변화와 자연저감, 자원환경지질학회지, 40(3), 277-293.   과학기술학회마을
20 강민주, 이평구, 염승준, 2006, 세창 폐금속광산 수계에서 미량원소의 지구화학적 거동특성 규명, 자원환경지질학회지, 39(3), 213-227.   과학기술학회마을
21 강미아, 2007, 산성광산배수로 인한 환경오염도 조사, 대한지질공학회지, 17(1), 143-150.   과학기술학회마을
22 기상청, 2009, www.kma.go.kr