DOI QR코드

DOI QR Code

Behaviors of Trace Elements Caused by the Precipitation of Minerals in Acid Mine Drainage

산성광산배수에서 광물의 침전에 따른 미량 원소의 거동

  • Yoon, Young Jin (School of Earth System Sciences, Kyungpook National University) ;
  • Lee, Ji Eun (School of Earth System Sciences, Kyungpook National University) ;
  • Bang, Sang Je (School of Earth System Sciences, Kyungpook National University) ;
  • Baek, Young Doo (Department of Biomedical Laboratory Science, Daegu Health College) ;
  • Kim, Yeongkyoo (School of Earth System Sciences, Kyungpook National University)
  • 윤영진 (경북대학교 지구시스템과학부) ;
  • 이지은 (경북대학교 지구시스템과학부) ;
  • 방상제 (경북대학교 지구시스템과학부) ;
  • 백영두 (대구보건대학교 임상병리과) ;
  • 김영규 (경북대학교 지구시스템과학부)
  • Received : 2018.09.11
  • Accepted : 2018.09.27
  • Published : 2018.09.30

Abstract

The precipitation and phase transformation processes of iron minerals in acid mine drainage have a great influence on the behavior of trace elements in drainage. However, it is not easy to accurately trace these processes in natural environments, and therefore, most studies have carried out in the laboratory to obtain the information on the precipitation and transformation of those minerals. In this study, the precipitation of minerals and the changes of trace elements in drainage water were investigated at different pH values in actual acid mine drainage collected from the Dalsung mine. The amount of some precipitated minerals was not enough for the mineral identification. However, from the minerals identified, amorphous minerals were formed first, and then goethite was precipitated probably from schwertmannite. When the pH of the sample was high (10), amorphous phases of minerals were still observed at even high pH (pH 10). With increasing time, the pH values decreased by precipitation and transformation of minerals. All the elements showed low concentrations at high pH (8, 10), which might be due to the precipitation of minerals at high pH and the effect of surface charge, and the concentrations of elements gradually increased with time. In the case of sulfur, it also increased in water due to the transformation of schwertmannite to goethite.

산성광산배수에서 철광물의 침전 및 상전이 과정은 배수 내의 미량원소의 거동에 많은 영향을 미친다. 그러나 자연에서 일어나는 이러한 과정을 정확하게 추적하기는 쉽지 않아 많은 연구들이 산성광산배수에서 일어나는 광물의 침전 및 상전이에 대하여 실내 실험에 의존하는 경우가 많았다. 본 연구에서는 달성광산에서 채취한 배수를 대상으로 실제 산성광산배수에서 서로 다른 pH 값을 갖는 조건에서 시간이 지남에 따라 일어나는 광물의 침전과 이에 따른 배수 내의 미량 원소 변화를 살펴보았다. 침전된 광물의 양이 많지 않아 동정이 어려운 경우도 있었지만 침전된 광물들의 정보를 종합해 보면 대체적으로 비정질의 광물 먼저 형성된 후 아마도 슈베르트마나이트를 거쳐서 추후에 침철석이 침전된 것으로 사료된다. 그러나 시료 중 pH가 높은 경우(10)에는 계속적으로 비정질 상태로 남아있었다. 시간이 지남에 따라 광물의 침전 및 전이에 의하여 배수의 pH는 계속적으로 낮아지는 경향을 보였다. 모든 원소들이 높은 pH (8, 10)에서 낮은 농도를 보였는데 이는 높은 pH에서의 광물의 침전과 표면전하의 영향으로 판단되며 각 원소의 농도는 시간이 지남에 따라 조금씩 증가하였다. 황의 농도는 슈베르트마나이트에서 침철석으로의 전이의 영향으로 배수 내에서 역시 증가하였다.

Keywords

References

  1. Acero, P., Ayora C., Torrent6, C., and Nieto, J.M. (2006) The behavior of trace elements during schwertmannite precipitation and subsequente transformation into goethite and jarosite. Geochimica et Cosmochimica Acta, 70, 4130-4139. https://doi.org/10.1016/j.gca.2006.06.1367
  2. Bigham, J.M., Carlson, L., and Murad, E. (1994) Schwertmannite, a new iron oxyhydroxysulphate from Pyhasalmi, Finland, and other localities. Mineralogical Magazine, 58, 641-648. https://doi.org/10.1180/minmag.1994.058.393.14
  3. Bigham, J.M., Schwertmann, U., Traina, S.J., Winland, R.L., and Wolf, M. (1996) Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochimica et Cosmochimica Acta, 60, 2111-2121. https://doi.org/10.1016/0016-7037(96)00091-9
  4. Burgos, W.D., Borch, T., Troyer, L.D., Luan, F., Larson, L.N., Brown, J.F., Lambson, J., and Shimizu, M. (2012) Schwertmannite and Fe oxide formed by biological low-pH Fe(II) oxidation versus abiotic neutralization: impact on trace metal sequestration, Geochimica et Cosmochimica Acta, 76, 29-44. https://doi.org/10.1016/j.gca.2011.10.015
  5. Byun, H.S, Kim, Y.H., and Kim, J.J. (2017) Adsorption characteristics of As, Cu, and Cd using precipitates from Dalseong mine. Journal of the Mineralogical Society of Korea, 30, 195-204 (written in Korean with English). https://doi.org/10.9727/jmsk.2017.30.4.195
  6. Burton, E.D., Bush, R.T., Sullicvan, L.A., and Mitchell, D.R.G. (2008) Schwertmannite transformation to geothite via the Fe(II) pathway: Reaction rates and implicaton s for iron-sulfide formation. Geochimica et Cosmochimica Acta, 71, 4551-4564.
  7. Casiot, C., Lebrun, S., Morin, G., Bruneel, O., Personne, J.C., and Elbaz-Poulichet, F. (2005) Sorption and redox processes controlling arsenic fate and transport in a stream impacted by acid mine drainage. Science of the Total Environment, 347, 122-130. https://doi.org/10.1016/j.scitotenv.2004.12.039
  8. Cheng, H., Hu, Y., Luo, J., Xu, B., and Zhao, J. (2009) Geochemical processes controlling fate and transport of arsenic in acid transport of arsenic in acid mine drainage (AMD) and natural systems. Journal of Hazardous Materials, 165, 13-26. https://doi.org/10.1016/j.jhazmat.2008.10.070
  9. Coggon, M., Becerra, C.A., Nüsslein, K., Miller, K., Yuretich, R., and Ergas, S.J. (2012) Bioavailability of jarosite for stimulating acid mine drainage attenuation, Geochimica et Cosmochimica Acta, 78, 65-76. https://doi.org/10.1016/j.gca.2011.11.030
  10. Fukushi, K., Sato, T., and Yanase, N. (2003) Soild-solution reactions in s(V) sorption by schwertmannite, Environmental Science & Technology, 37, 3581-3586. https://doi.org/10.1021/es026427i
  11. Fukushi, K., Sato, T., Yanase, N., Minato, J., and Yamada, H. (2004) Arsenate sorption on schwertmannite, American Mineralogist, 89, 1728-1734. https://doi.org/10.2138/am-2004-11-1219
  12. Gagliano, W.B., Brill, MR., Bigham, J.M., Jones, F.S., and Traina, S.J., (2004) Chemistry and mineralogy of ochreous sediments in a constructed mine drainage wetland. Geochim. Cosmochim. Acta, 68, 2119-2128. https://doi.org/10.1016/j.gca.2003.10.038
  13. Gerth J. (1990) Unit-cell dimensions of pure and trace metal-associated goethites, Geochimica et Cosmochimica Acta, 54, 363-371. https://doi.org/10.1016/0016-7037(90)90325-F
  14. Jonsson, J., Persson, P., Sjoberg, S., and Lovgren, L. (2005) Schwertmannite precipitated from acid mine drainage: phase transformation, sulphate release and surface properties. Applied Geochemistry, 20, 179-191. https://doi.org/10.1016/j.apgeochem.2004.04.008
  15. Kawano, M. and Tomita, K. (2001) Geochemical modeling of bacterially induced mineralization of schwertmannite and jarosite in sulfuric acid spring water. American Mineralogist, 86, 1156-1165. https://doi.org/10.2138/am-2001-1005
  16. Keum, G.J., Jung, E.H., and Kim, Y. (2011) Soprtion and thermal characteristics of $AsO_4$, $SeO_3$, $CrO_4$ on schwertmannite. Journal of the Mineralogical Society of Korea, 23, 117-124 (written in Korean with English abstract).
  17. Kim, H.J. and Kim, Y. (2010) Transformation of schwertmannite to goethite and related behavior of heavy metals. Journal of the Mineralogical society of Korea, 24, 63-71 (written in Korean with English abstract).
  18. Kim, H.J., Choo C.O., and Kim, Y. (2014) The effect of mineralogy on the mobility of heavy metals in mine tailings: a case study in the Samsanjeil mine, Korea. Environmental Earth Sciences, 71, 3429-3441. https://doi.org/10.1007/s12665-013-2732-1
  19. Kim, Y. (2015) Mineral phases and mobility of trace metals in white aluminum precipitates found in acid mine drainage. Chemosphere, 119, 803-811. https://doi.org/10.1016/j.chemosphere.2014.08.034
  20. Kim, Y. (2018) Effects of different oxyanions in solution on the precipitation of jarosite at room temperature. Journal of Hazardous Materials, 353, 118-126. https://doi.org/10.1016/j.jhazmat.2018.04.016
  21. Konhauser, K.O. (1998) Diversity of bacterial iron mineralization. Earth-Science Revews, 43, 91-121. https://doi.org/10.1016/S0012-8252(97)00036-6
  22. Lee, J.E. and Kim, Y. (2008) A quantitative estimation of the factors affecting pH values using simple geochemical data from acid mine drainage. Environmental Geology, 55, 65-75. https://doi.org/10.1007/s00254-007-0965-6
  23. Lee, J.E., Kim, Y., and Choo, C.O. (2003) Hydrogeochemistry and comparison of leachate and effluent from the Dalsung mine. Journal of the Geological Society of Kora, 39, 519-533 (in Korean with English abstract).
  24. Little, B., Wagner, P., Hart, K., Ray, R., Lavoie, D., Nealson, K., and Aguilar, C. (1998) The role of biomineralization in microbiologically influenced corrosion. Biodegradation, 9, 1-10. https://doi.org/10.1023/A:1008264313065
  25. Regenspurg, S. and Peiffer, S. (2005) Asenate and chromate incorporation in schwertmannite. Applied Geochemistry, 20, 1226-1239. https://doi.org/10.1016/j.apgeochem.2004.12.002
  26. Schroth, A.W. and Parnell, R.A. (2005) Trace metal retention through the schwertmannite to goethite tansformation as observed in a field setting, Alta Mine MT. Applied Geochemistry, 20, 907-917. https://doi.org/10.1016/j.apgeochem.2004.09.020
  27. Schwertmann, U. and Carlson, L. (2005) The pH-dependent transformation of schwertmannite to goethite at $25^{\circ}C$. Clay Minerals, 40, 63-66. https://doi.org/10.1180/0009855054010155
  28. Stiers, W. and Schwertmann, U. (1985) Evidence for manganese substitution in synthetic goethite. Geochimica et Cosmochimica Acta, 49, 1909-1911. https://doi.org/10.1016/0016-7037(85)90085-7
  29. Webster, J.G., Swedlund, P.J., and Webster, K.S. (1998) Trace metal adsorption onto an acid mine drainage iron(III) oxy hydroxy sulfate. Environmental Science & Technology, 32, 1361-1368. https://doi.org/10.1021/es9704390
  30. Yu, J.Y., Heo, B., Choi, I.K., Cho, J.P., and Chang, H.W. (1999) Apparent solubilities of schwertmannite and ferrihydrite in natural stream waters polluted by mine drainage. Geochimica et Cosmochimica Acta, 63, 3407-3416. https://doi.org/10.1016/S0016-7037(99)00261-6
  31. Yu, J.Y., Heo, B. (2001) Dilution and removal of dissolved metals from acid min Drainage along Imgok Creek, Korea. Applied Geochemistry, 16, 1041-1053. https://doi.org/10.1016/S0883-2927(01)00017-8