• Title/Summary/Keyword: 광물입자

Search Result 386, Processing Time 0.024 seconds

Numerical Simulation for Characteristics of Rock Strength and Deformation Using Grain-Based Distinct Element Model (입자 기반 개별요소모델을 통한 암석의 강도 및 변형 특성 모사)

  • Park, Jung-Wook;Lee, Yun-Su;Park, Chan;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.24 no.3
    • /
    • pp.243-254
    • /
    • 2014
  • The present study introduces a numerical technique to simulate the mechanical behavior of brittle rock, based on a grain-based model combined with Universal Distinct Element Code (GBM-UDEC). Using the technique, the microstructure of rock sample was represented as an assembly of deformable polygonal grains, and the failure process with the evolution of micro tensile cracks under compression was examined. In terms of the characteristics of strength and deformation, the behaviors of the simulated model showed good agreement with the observations in the laboratory-scale experiments of rock.

Genesis and Characteristics of the Soil Clay Minerals Derived from Major Parent Rocks in Korea -III. Soil Mineralogy of Sand and Silt Size Fractions in the Soils (한국(韓國)의 주요(主要) 모암(母岩)에서 발달(發達)된 토양점토광물(土壤粘土鑛物)의 특성(特性)과 생성학적(生成學的) 연구(硏究) -III. 모래와 미사중(微砂中)에 토양광물(土壤鑛物)의 특성비교(特性比較))

  • Um, Myung-Ho;Um, Ki-Tae;Lim, Hyung-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 1992
  • Sand and silt size fractions of soils which were derived from five major rocks of granite, granite-geniss, limestone, shale, and basalt in Korea were studied. Determination of the mineralogical and chemical composition of rock-forming mineral breakdown which is accompanied by the formation of secondary minerals. The chemical composition of the fraction was largely changed with the content of weatherable and resistant soil minerals such as ferromagenesian minerals, carbonates, and guartz. In the sand fractions of the soils from the granite and granite-gneiss, chlorite-vermiculite mixed layers seem to be an intermediate weathering product prior to the weathering state of the formation of vermiculite from chlorite. Kaolin minerals in the silt fractions of the soils from the granite-gneiss are considered to be formed by the pseudomorphic transformation of plagioclase. In the sand and silt fractions of the soils derived from the limestone, large amount of calcite and dolomite seems to have been inherited from the parent rocks. The primary chloritc, micas, and feldspars are considered to be formed from the weathering remains after leaching of carbonate minerals during the soil formation. In the residual soils(Gueom series) developed from the basalt, quartz and micas were coexisted with plagioclase and augite inherited from the parent rock.

  • PDF

Review about the Impacts from Volcanic Ash Fall (화산재 강하로부터의 영향 고찰)

  • Lee, Jeonghyun;Yun, Sung-Hyo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.1
    • /
    • pp.73-86
    • /
    • 2020
  • The materials generating from volcanic eruption are volcanic gases, lavas and pyroclastic materials. Volcanic ash which has small-grain size (< 2 mm in diameter) can be moved easily and disperse widely, thus it may affect to communities across hundreds of square kilometers. The impacts from volcanic ash fall on people, structures, equipments, plants and livestock largely depend on ash thickness. According to increasing ash thickness, the intensity and area of damage may increase and affect significant damages not to human health but also to infrastructures. To reduce the impacts from volcanic ash fall, we have to establish the guidances about the nature and extent of the hazard and prepare the actions to increase abilities of communities to manage hazard. Although we don't have any experience caused by volcanic ash fall during and after volcanic eruption, we need to prepare the impacts of volcanic ash fall for future eruption in the areas surrounding Korea.

New Occurrence of Haengmae Formation in Taebaeksan Basin (태백산분지 내 새로운 행매층 분포 확인)

  • Song, Yungoo;Park, Chaewon;Kim, Namsoo;Choi, Sung-Ja;Chwae, Ueechan;Kwon, Sanghoon;Jang, Yirang
    • Economic and Environmental Geology
    • /
    • v.54 no.3
    • /
    • pp.365-372
    • /
    • 2021
  • Pebble-bearing clastic carbonate rock which has been found in and around the Jeongseon and Okgye through the field survey was studied in petrological and mineralogical characteristics. We define the clastic carbonate rocks as 'Dolomite-pebble bearing fine sand-sized dolostone, or grainstone', which are characterized by the existence of dolomite single grains and Mg-phengite, and by the subsequent formation of secondary calcite cements. These attributes correspond well with those of the typical Haengmae Formation from Haengmae-dong, Mitan-myeon, Jeongseon-gun, thus the carbonate rocks in the Jeongseon and Okgye areas must belong to the Haengmae Formation. The result suggests that the Haengmae Formation is an independent unit among the Paleozoic lithostratigraphic units in Taebaek basin and lies in the upper part of Jeongseon and Sukbyungsan Formations under the Hongjeom Formation of Pyeongan Supergroup.

Determination of Crystal Size and Microstrain of $CeO_2$ by Rietveld Structure Refinement (리트벨트 구조분석법에 의한 $CeO_2$의 결정크기 및 미세응력 결정)

  • Hwang, Gil-Chan;Choi, Jin-Beom
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.201-208
    • /
    • 2008
  • Ceria ($CeO_2$) becomes one of important functional nanomaterials and a key abrasive material for chemical-mechanical planarization (CMP) of advanced integrated circuits in silicon semi-conductor technology. Two synthetic crystalline ceria (RT735, RT835) are studied by the Rietveld structural refinement to determine crystallite size and microstrain. Rietveld indices of RT735 and RT835 indicate good fitting with $R_p(%)=8.50$, 8.34; $R_{wp}(%)=13.4$, 13.5; $R_{exp}(%)=11.3$, 11.5; $R_B(%)=2.21$, 2.36; S(GofF: Goodness of fit)=1.2, 1.2, respectively. $CeO_2$ with space group Fm3m show a=5.41074(2), 5.41130(6) ${\AA}$, V=158.406(1), 158.455(3)${\AA}^3$ in dimension. Detailed Rietveld refinement reveals that crystallite size and microstrain are 37.42(1) nm, 0.0026 (RT735) and 72.80(2) nm, 0.0013 (RT835), respectively. It also shows that crystallite size and microstrain of ceria are inversely proportional to each other.

Rock-magnetic Properties of Chimneys from TA25 Seamount in the Tofua Arc, Southwest Pacific (통가 EEZ내 TA25 해저산에서 채취한 열수광체의 암석자기학적 특성 연구)

  • Kim, Wonnyon;Pak, Sang Joon;Lee, Kyeong Yong;Moon, Jai-Woon;Kim, Hyun Sub;Choi, Sun Ki
    • Economic and Environmental Geology
    • /
    • v.46 no.3
    • /
    • pp.207-214
    • /
    • 2013
  • To identify rock-magnetic properties of volcanogenic hydrothermal sulfide deposits, chimneys were obtained from the Tofua Arc in Southwest Pacific, using a remotely operated vehicle (ROV) and Grab with AV cameras (GTVs). Three different types of chimneys used in this study are a high-temperature chimney with venting fluid-temperature of about $200^{\circ}C$ (ROV01), a low-temperature chimney of about $80^{\circ}C$ (GTV01), and an inactive chimney (ROV02). Magnetic properties of ROV01 are dominated by pyrrhotite, except for the outermost that experienced severe oxidation. Concentration and grain-size of ROV01 pyrrhotite are relatively low and fine. For GTV01, both magnetic concentration and grain-size increase from interior to margin. Pyrrhotite, dominant in the core, becomes mixed with hematite in the rim of the chimney due to secondary oxidation. High concentration and large grain-size of magnetic minerals characterize the ROV02. Dominant magnetic phases are pyrrhotite, hematite and goethite. In particular, the outermost rim shows a presence of magnetite produced by magnetotactic bacterial activity. Such distinctive contrast in magnetic concentration, grain-size and mineralogy among three different types of chimney enables the rock-magnetic study to characterize an evolution of hydrothermal deposits.

A Study of Properties and Coating Natural Mineral Pumice Powder of in Korea (한국산 천연 광물 부석 파우더 코팅 및 특성에 관한 연구)

  • Kim, In-Young;Noh, Ji-Min;Nam, Eun-Hee;Shin, Moon-Sam
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.498-506
    • /
    • 2019
  • This study is based on a coating method that provides utilization value as a micronised powder for cosmetic raw materials using natural minerals buried in Bonghwa, Gyeongsangbuk-do in Korea. The mineral powder name is called Buseok, and chemical name is pumice powder. The results of a study on the efficacy of cosmetics are reported by the development of particulate powder to assess the performance of this powder. First of all, in order to coat the surface of this powder with oil, aluminum hydroxide was coated on the particulate surface and then coated with alkylsilan. In addition, it was coated with vegetable oil to prevent condensation of the powder and increase the dispersion in the oil phase. First; the particle size of pumice powder was from 10 to 50mm having porous holes on the surface of the particles. Second; The components of this powder contained $SiO_2$, $Al_2O_3$, $Fe_2O_3$, MgO, CaO, $K_2O_2$, $Na_2O$, $TiO_2$, $TiO_2$, MnO, $Cr_2O_3$, $V_2O_5$. Third: The particles of this powder have a planetary structure and are reddish-brown with porosity through SEM and TEM analysis. Fourth; the far-infrared radiation rate of this parabolic powder was $0.924{\mu}m$, and the radiative energy was $3.72{\times}102W/m^2$ and ${\mu}m$. In addition, the anion emission is 128 ION/cc, which shows that the coating remains unchanged. Based on these results, it is expected to be widely applied to basic cosmetics such as BB cream, cushion foundation, powderfect, and other color-coordinated cosmetics, sunblock cream, wash-off massage pack as an application of cosmetics. (Small and Medium Business Administration: S2601385)

Effect of Grinding Method and Grinding Rate on the Dry Beneficiation of Kaolin Mineral (분쇄방식 및 분쇄율이 고령토 광물의 건식 정제에 미치는 영향)

  • Kim, Sang-Bae;Choi, Young-Yoon;Cho, Sung-Baek;Kim, Wan-Tae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.129-138
    • /
    • 2008
  • The characteristics of beneficiating kaolin mineral by liberation (selective grinding) and air classification have been investigated, comparing the grinding rates of ball mill and impact mill. The ore was ground using a ball mill and a impact mill to evaluate the grindability of the two grinding methods based on the constant production amount of fine particles in size less than 325 mesh. Then, the fine product was further separated into two fractions using an air-classifier and each fraction was chemically analyzed to compare the beneficiation efficiency of the two grinding methods. The chemical grade of kaolin mineral decreased as increasing the grinding rate of both the mills. particularly in the case of ball mill because of overgrinding impurities such as quartz and feldspar. In the case of the ball milling, the fine fraction less than 325 mesh was air-classified at a cutting point of $43\;{\mu}m$. The production rate of the air-classified concentrate was found to be 66.2 wt%, removing 5.3% of $Fe_2O_3$ and 34.6% of CaO. Under the same conditions mentioned above with the impact mill, the production rate of the air-classified concentrate was 64.4 wt%, removing 34.2% of $Fe_2O_3$, 67.6% of CaO and 25.0% of $TiO_2$. Therefore, our results indicate that impact mill is superior to ball mill in terms of impurity removal.

Modeling Study on Deterioration of Stone Monuments in the Gyeongju Namsan Mountain by Acid Rain (산성비에 의한 경주남산지역 석조문화재의 손상 임상연구)

  • Do, Jin-Young;Choi, Gi-Joo;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.35-47
    • /
    • 2009
  • The deteriorations of stone monuments located in Gyeongju area are predicted in a modeling study. Artificial rain and accelerated weathering test are here applied to the Gyeongju Namsan granite and cement mortar. They are reacted with pH 4.0, pH 8.0 and pH 5.6 rain, respectively. The two former values are the limited acidity values in the Gyeongju (the acidity of rain of the Gyeongju were pH $4.93{\sim}6.39$ in 2005) and the latter is the limited acidity of acid rain. The rains of pH 5.6 and pH 8.0 reach close to a value of pH 7.0 after the reaction with the Gyeongju Namsan granite. After application of the artificial rain and weathering test, the weight of specimens were reduced and the contents of soluble ions in the specimens were increased. These results are attributable to solution of minerals in the specimens. At first, the microlithic have dissolved in ground from the reaction with acid rain. And then mainly quartz, plagioclase and orthoclase bound by the microlithic are disintegrated. The cement mortars are dissolved after the reaction with not only acid but alkali rain. The concentrations of ions in the dissolved cement mortar are higher than those in granite.

A Study on Applicability of Mercury-contaminated Tailing and Soil Remediation around abandoned Mines using Washing Process (세척공법을 이용한 광산주변 수은 함유 오염물질 처리 적용성 평가)

  • Kwon, Yo Seb;Park, So Young;Koh, Il Ha;Ji, Won Hyun;Lee, Jin Soo;Ko, Ju In
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.337-346
    • /
    • 2020
  • This study was carried out to evaluate the applicability of the soil washing process to remediation mercury-contaminated mine tailing or solid material (soil and sediments etc.) around abandoned mines. First, the physicochemical characteristics of mine tailing were analyzed through particle size analysis and sequential extraction. Secondly, laboratory scale washing experiments were performed using hydrochloric acid, nitric acid, potassium iodide and sodium thiosulfate. As a results of particle size analysis, mine tailing particle were concentrated below 40 mesh and the particle size below 200 mesh was the most analyzed. As a result of sequential extraction, elemental mercury fraction was analyzed as the highest with 69.12%, with strongly bound fraction 15.25% and residual and HgS fractions 11.97%, respectively. Laboratory scale washing experiments showed low applicability for nitric acid and sodium thiosulfate solutions. In case of hydrochloric acid solution, it was analyzed that mercury removal was possible at particle size of 200 mesh or more. Therefore, it is considered to be performed together with the physical sorting process. Potassium iodide solution was analyzed to have high washing efficiency at all concentrations and particle sizes. In particular, the mercury removal efficiency is high in the micro particles, and thus the applicability of the washing technology is the highest.