Browse > Article
http://dx.doi.org/10.9719/EEG.2013.46.3.207

Rock-magnetic Properties of Chimneys from TA25 Seamount in the Tofua Arc, Southwest Pacific  

Kim, Wonnyon (Deep-sea & Seabed Resources Research Division, Korea Institute of Ocean Science & Technology)
Pak, Sang Joon (Deep-sea & Seabed Resources Research Division, Korea Institute of Ocean Science & Technology)
Lee, Kyeong Yong (Deep-sea & Seabed Resources Research Division, Korea Institute of Ocean Science & Technology)
Moon, Jai-Woon (Deep-sea & Seabed Resources Research Division, Korea Institute of Ocean Science & Technology)
Kim, Hyun Sub (Deep-sea & Seabed Resources Research Division, Korea Institute of Ocean Science & Technology)
Choi, Sun Ki (Deep-sea & Seabed Resources Research Division, Korea Institute of Ocean Science & Technology)
Publication Information
Economic and Environmental Geology / v.46, no.3, 2013 , pp. 207-214 More about this Journal
Abstract
To identify rock-magnetic properties of volcanogenic hydrothermal sulfide deposits, chimneys were obtained from the Tofua Arc in Southwest Pacific, using a remotely operated vehicle (ROV) and Grab with AV cameras (GTVs). Three different types of chimneys used in this study are a high-temperature chimney with venting fluid-temperature of about $200^{\circ}C$ (ROV01), a low-temperature chimney of about $80^{\circ}C$ (GTV01), and an inactive chimney (ROV02). Magnetic properties of ROV01 are dominated by pyrrhotite, except for the outermost that experienced severe oxidation. Concentration and grain-size of ROV01 pyrrhotite are relatively low and fine. For GTV01, both magnetic concentration and grain-size increase from interior to margin. Pyrrhotite, dominant in the core, becomes mixed with hematite in the rim of the chimney due to secondary oxidation. High concentration and large grain-size of magnetic minerals characterize the ROV02. Dominant magnetic phases are pyrrhotite, hematite and goethite. In particular, the outermost rim shows a presence of magnetite produced by magnetotactic bacterial activity. Such distinctive contrast in magnetic concentration, grain-size and mineralogy among three different types of chimney enables the rock-magnetic study to characterize an evolution of hydrothermal deposits.
Keywords
chimney; hydrothermal deposits; magnetic mineral; rock-magnetic property; Tofua Arc;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alt, J.C. (1995) Subseafloor processes in mid-ocean ridge hydrothermal systems. In Humphris, S.E., Zierenberg, R.A., Mullineaux, L.S. and Thomson, R.E.(eds.) Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. American Geophysical Union, Geophysical Monograph 91, p.178-193.
2 Bazylinski, D.A., Frankel, R.B., Heywood, B.R., Mann, S., King, J.W., Donaghay, P.L. and Hanson, A. K. (1995) Controlled biomineralization of magnetite $(Fe_3O_4)$ and greigite $(Fe_3S_4)$ in a magnetotactic bacterium. Applied Environmental Microbiology, v.61, p.3232-3239.
3 de Ronde, C.E.J., Baker, E.T., Massoth, G.J., Lupton, J.E., Wright, I.C., Feely, R.A. and Greene, R.G. (2001) Intra-oceanic subduction-related hydrothermal venting, Kermadec volcanic arc, New Zealand. Earth and Planetary Science Letters, v.193, p.359-369.   DOI   ScienceOn
4 de Ronde, C.E.J., Massoth, G.J., Baker, E.T. and Lupton, J.E. (2003) Submarine hydrothermal venting related to volcanic arcs. In Simmons, S.F. and Graham, I.J.(eds.) Giggenbach Memorial Volume: Volcanic, Geothermal and Ore-Forming Fluids: Rulers and Witnesses of Processes within the Earth. Society of Economic Geologists, Special Publication 10, p.91-109.
5 Dunlop, D.J. and West, G.F. (1969) An experimental evaluation of single domain theories. Reviews of Geophysics, v.7, p.709-757.   DOI
6 Evans, M.E. and Heller, F. (2003) Environmental Magnetism: Principles and Applications of Enviromagnetics. Academic Press, Oxford, 299p.
7 Hannington, M.D., Herzig, P., Scott, S., Thompson, G. and Rona, P. (1991) Comparative mineralogy and geochemistry of gold-bearing sulfide deposits on the mid-ocean ridges. Marine Geology, v.101, p.217-248.   DOI   ScienceOn
8 Hannington, M.D., de Ronde, C.E.J. and Petersen, S. (2005) Seafloor tectonics and submarine hydrothermal systems. In Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J. and Richards, J.P.(eds.) 100th anniversary Volume 1905-2005 of Economic Geology. Society of Economic Geologists, p.111-142.
9 Hekinian, R., Fevrier, M., Bischoff, J.L., Picot, P. and Shanks, W.C. (1980) Sulfide deposits from the East Pacific Rise near 21 $^{\circ}N$. Science, v.207, p.1433-1444.   DOI   ScienceOn
10 Hekinian, R., Hoffert, M., Larque, P., Chemine, J.L., Stoffers, P. and Bideau, D. (1993) Hydrothermal Fe and Si oxyhydroxide deposits from South Pacific Intraplate volcanoes and East Pacific Rise Axial and off-axial regions. Economic Geology, v.88, p.2099-2121.   DOI
11 Kim, W., Doh, S.-J., Park, Y.-H. and Yun, S.-T. (2007) Twoyear magnetic monitoring in conjunction with geochemical and electron microscopic data of roadside dust in Seoul, Korea. Atmospheric Environment, v.41, p.7627-7641.   DOI   ScienceOn
12 Kim, W., Doh, S.-J. and Yu, Y. (2012) Asian dust storm as conveyance media of anthropogenic pollutants. Atmospheric Environment, v.49, p.41-50.   DOI   ScienceOn
13 Kim, W., Doh, S.-J., Yu, Y. and Lee, Y.I. (2013) Magnetic evaluation of sediment provenance in the northern East China Sea using fuzzy c-means cluster analysis. Marine Geology, http://dx.doi.org/10.1016/j.margeo.2013.01.001   DOI   ScienceOn
14 Lowrie, W. (1990) Identification ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophysical Research Letter, v17, p.159-162.   DOI
15 Maher, B.A. (1988) Magnetic properties of some synthetic submicron magnetite. Geophysical Journal, v.94, p.83-96.   DOI
16 Simkin, T. and Seibert, L. (1994) Volcanoes of the World. 2nd(ed), Smithsonian Institution, Geoscience Press, Arizona, 349p.
17 Park, Y.-H., Doh, S.-J., Kim, W. and Suk, D. (2005) Deformation history inferred from magnetic fabric in the southwestern Okcheon metamorphic belt, Korea. Tectonophysics, v.474, p.684-695.
18 Perfit, M.R. and Davidson, J.P. (2000) Plate tectonics and volcanism. In Sigurdsson, H., Houghton, B.F., McNutt, S.R., Rymer, H., Stix, J. and Ballard, R.D.(eds.) Encyclopedia of Volcanoes. Academic Press, San Diego, p.89-113.
19 Schultz, H.N. and Jorgensen, B.B. (2001) Big bacteria. Annual Review of Microbiology. v.55, p.105-137.   DOI   ScienceOn
20 Simmons, S.L., Sievert, S.M., Frankel, R.B., Bazylinski, D.A. and Edwards, K.J. (2004) Spatiotemporal distribution of marine magnetotactic bacteria in a seasonally stratified coastal pond. Applied Environmental Microbiology, v.70, p.6230-6239.   DOI   ScienceOn
21 Stoffers, P., Worthington, T., Schwarz-Schampera, U., Hannington, M., Massoth, G. and Shipboard Scientific Party (2006) Submarine volcanoes and high-temperature hydrothermal venting on the Tonga Island arc, S.W. Pacific. Geology, v.34, p.453-456.   DOI   ScienceOn
22 Thompson, R. and Oldfield, F. (1986) Environmental Magnetism. Allen and Unwin, London, 217p.
23 Turner, S., Hawkesworth, C., Rogers, N., Bartlett, J., Worthington, T., Hergt, J., Pearce, J. and Smith, I. (1997) 238U-230Th disequilibria, magma petrogenesis, and flux rates beneath the depleted Tonga-Kermadec island arc. Geochimica et Cosmochimica Acta, v.61, p.4855-4884.   DOI   ScienceOn
24 Wilcock, W.S.D. and Delaney, J.R. (1996) Mid-ocean ridge sulfide deposits: Evidence for heat extraction from magma chambers or cracking fronts?. Earth and Planetary Science Letters, v.145, p.49-64.   DOI   ScienceOn
25 Zierenberg, R.A., Fouquet, Y., Miller, J. and Shipboard Scientific Party (1998) The deep structure of a seafloor hydrothermal deposit. Nature, v.392, p.485-488.   DOI   ScienceOn
26 Worthington, T., Stoffers, P., Timm, C., Zimmerer, M. and Garbe-Schonberg, D. (2004) Effects of subducting the Louisville Ridge and Osbourn Trough beneath the south Tonga arc. Geochimica et Cosmochimica Acta, v.68, p.A614.