DOI QR코드

DOI QR Code

Review about the Impacts from Volcanic Ash Fall

화산재 강하로부터의 영향 고찰

  • Lee, Jeonghyun (Volcano Specialized Research Center, Pusan National University) ;
  • Yun, Sung-Hyo (Volcano Specialized Research Center, Pusan National University)
  • 이정현 (부산대학교 화산특화연구센터) ;
  • 윤성효 (부산대학교 화산특화연구센터)
  • Received : 2020.02.11
  • Accepted : 2020.03.20
  • Published : 2020.03.31

Abstract

The materials generating from volcanic eruption are volcanic gases, lavas and pyroclastic materials. Volcanic ash which has small-grain size (< 2 mm in diameter) can be moved easily and disperse widely, thus it may affect to communities across hundreds of square kilometers. The impacts from volcanic ash fall on people, structures, equipments, plants and livestock largely depend on ash thickness. According to increasing ash thickness, the intensity and area of damage may increase and affect significant damages not to human health but also to infrastructures. To reduce the impacts from volcanic ash fall, we have to establish the guidances about the nature and extent of the hazard and prepare the actions to increase abilities of communities to manage hazard. Although we don't have any experience caused by volcanic ash fall during and after volcanic eruption, we need to prepare the impacts of volcanic ash fall for future eruption in the areas surrounding Korea.

화산 분화 시 방출되는 물질은 화산가스, 용암, 화성쇄설물이 있다. 화성쇄설물 중 입자크기가 작은(직경 2 mm 이하) 화산재는 쉽게 이동하여 먼 거리까지 영향을 미칠 수 있다. 공기 중에 부유한 화산재 입자는 강하재가 되어 지표에 퇴적된다. 이러한 강하재가 미치는 영향은 퇴적되는 두께에 따라 달라진다. 퇴적되는 화산재의 두께가 증가할수록 피해의 규모는 커지고 그 영향 범위 또한 넓어지며, 보건 및 사회 기반 시설에 대한 영향도 심각해진다. 따라서 강하재의 영향에 따른 피해 저감을 위해 재해의 본질과 정도, 영향에 대한 지침을 마련하고 지역사회의 위험 관리 능력 향상을 위한 대비 조치를 마련해야 한다. 백두산을 비롯한 한반도 주변 지역에서 앞으로 일어날 수 있는 화산 분화로 인한 강하재의 영향에 대비할 필요가 있다.

Keywords

References

  1. Barnard, S., 2009, The vulnerability of New Zealand lifelines infrastructure to ashfall. Ph.D. dissertation, University of Canterbury, 286p.
  2. Cashman, K.V. and Scheu, B., 2015, Magmatic fragmentation. The Encyclopedia of Volcanoes (Second Edition), Elsevier, 459-471.
  3. Covello, V.T. and Allen, F., 1988, Seven cardinal rules of risk communication. U.S. Environmental Protection Agency, Washington, D.C.. Policy Document OPA-87-020.
  4. Durand, M., Gordon, K., Johnston, D.M., Lorden, R., Poirot, T., Scott, J. and Shephard, B., 2001. Impacts of and responses to ashfall in Kagoshima from Sakurajima Volcano - Lessons for New Zealand. Institute of Geological & Nuclear Sciences Science Report, 30, 53p.
  5. GNS Science, 2010, Impact of ash falll. (https://www.gns.cri.nz/Home/Learning/Science-Topics/Volcanoes/Volcanic-Hazards/Ash-fall)
  6. Gonnermann, H.M. and Manga, M., 2007, The fluid mechanics inside a volcano. Annual Review of Fluid Mechanics, 39, 321-356. https://doi.org/10.1146/annurev.fluid.39.050905.110207
  7. Guffanti, M., Mayberry, G.C., Casadevall, T.J. and Wunderman, R., 2008, Volcanic hazards to airports. Natural Hazards, 51, 287-302. https://doi.org/10.1007/s11069-008-9254-2
  8. Horwell, C.J. and Baxter, P.J., 2006, The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation. Bulletin of Volcanology, 69, 1-24. https://doi.org/10.1007/s00445-006-0052-y
  9. Horwell, C. and Donaldson, K., 2015, Grain size dependence of penetration of airborne particulate matter into the respiratory system. vhp_img3236(Public domain, images, media, USGS. (https://www. usgs.gov/media/images/grain-size- dependence-penetration-airborne-particulate-matter)
  10. Johnston, D.M., 1997, Physical and social impacts of past and future volcanic eruptions in New Zealand, Unpublished Ph.D. Thesis, University of Canterbury, Christchurch, 288p.
  11. Johnston, D.M., Houghton, B.F., Neall, V.E., Ronan, K.R. and Paton, D., 2000, Impacts of the 1945 and 1995-1996 Ruapehu eruptions, New Zealand: an example of increasing societal vulnerability. Bulletin of Geological Society of America, 112, 720-726. https://doi.org/10.1130/0016-7606(2000)112<720:IOTARE>2.0.CO;2
  12. Kartadinata, M.N., Okuno, M., Nakamura, T. and Kobayashi, T., 2002, Eruptive history of Tangkuban Perahu Volcano, west Java, Indonesia - A preliminary report, Journal of Geography (Chigaku Zasshi), 111, 404-409. https://doi.org/10.5026/jgeography.111.3_404
  13. Kueppers, U., Putz, C., Spieler, O. and Dingwell, D.B., 2009, Abrasion in pyroclastic density currents: insights from tumbling experiments. Physics and Chemistry of the Earth, 45, 33-39. https://doi.org/10.1016/j.pce.2011.09.002
  14. Martha, S.V., Claudia, V., Karen, B.L. and Octavio, A.A., 2018, Health impact of volcanic emissions, in Volcanoes, Ed. Aiello, G., ISBN:978-1-78923-348-3, Intech Open Access books, dx.doi.org/10.5772/intechopen.73283, 263-284.
  15. McNutt, S.R. and Williams, E.R., 2010, Volcanic lightning: global observations and constraints on source mechanisms. Bulletin of Volcanology, 72, 1153-1167. https://doi.org/10.1007/s00445-010-0393-4
  16. Miller, T.P. and Casadevall, T.J., 2000, Volcanic ash hazards to aviation. In Sigurdsson, H., Houghton, B.F., Rymer, H., Stix, J. and McNutt, S.R., Encyclopedia of Volcanoes, Elsevier, 1417p.
  17. Parfitt, E.A. and Wilson, L., 2008, Fundamentals of physical volcanology. Blackwell Publishing, Oxford, 256p.
  18. Paton, D., Smith, L. and Johnston, D.M., 2005, When good intentions turn bad: promoting natural hazard preparedness. Australian Journal of Emergency Management, 20, 25-30.
  19. Pyle, D.M., 1989, The thickness, volume and grain size of tephra fall deposits, Bulletin of Volcanology, 51, 1-15. https://doi.org/10.1007/BF01086757
  20. Sammonds, P., McGuire, B. and Edwards, S., 2010, Volcanic hazard from Iceland: analysis and implications of the Eyjafjallajökull eruption. UCL Institute for Risk and Disaster Reduction Report, London, England, 21p.
  21. Shipley, S. and Sarna-Wojcicki, A.M., 1982, Distribution, thickness and mass of Late Pleistocene and Holocene tephra from major Volcanoes in the northwestern United States: a preliminary assessment of hazards from volcanic ejecta to nuclear reactors in the pacific northwest, US Geological Survey Miscellaneous Field Studies Map MF-1435.
  22. Spence, R.J.S., Kelman, I., Baxter, P.J., Zuccaro, G. and Petrazzuoli, S., 2005, Residential building and occupant vulnerability to tephra fall. Natural Hazards and Earth System Sciences, 5, 477-494. https://doi.org/10.5194/nhess-5-477-2005
  23. Stewart, C., Johnstone, D.M., Leonard, G., Horwell, C.J., Thordarsson, T. and Cronin, S., 2006, Contamination of water supplies by volcanic ash fall: a literature review and simple impact model, Journal of Volcanology and Geothermal Research, 158, 296-306. https://doi.org/10.1016/j.jvolgeores.2006.07.002
  24. UNISDR, 2011, HFA Progress in Asia-Pacific: Regional Synthesis Report 2009-2011.
  25. USGS, 2010, Volcanic ash effects on aircrafts. vhp_ img3132(Public domain), images, media, USGS. (https://www.usgs.gov/media/images/volcanic-ash-effects-aircrafts)
  26. Vogel, A., Diplas, S., Durant, A.J., Azar, A.S., Sunding, M.F., Rose, W.I., Sytchkova, A., Bonadonna, C., Kruger, K. and Stohl, A., 2017, Reference data set of volcanic ash physicochemical and optical properties. Journal of Geophysical Research: Atmospheres, 122, 9485-9514. https://doi.org/10.1002/2016JD026328
  27. Walker, G.P.L., 1981, Generation and dispersal of fine ash by volcanic eruptions. Journal of Volcanology and Geothermal Research, 11, 81-92. https://doi.org/10.1016/0377-0273(81)90077-9
  28. Weber, K., Eliasson, J., Vogel, A., Fisher, C., Pohl, T., Haren, G., Meier, M., Grobéty, B. and Dahmann, D., 2012, Airborne in-situ investigations of the Eyjafjallajokull volcanic ash plume on Iceland and over northwestern Germany with light aircrafts and optical particle counters. Atmospheric Environment, 48, 9-21. https://doi.org/10.1016/j.atmosenv.2011.10.030
  29. Wilson, T.M., 2009, Vulnerability of pastoral farming systems to volcanic ash fall hazard. Ph.D. dissertation, University of Canterbury, 241p.
  30. Wilson, T.M., Daly, M. and Johnston, D.M., 2009, Review of impacts of volcanic ash on electricity distribution systems, broadcasting and communication networks. Auckland Engineering Lifelines Group. Auckland Regional Council Technical Publication No.051, April 2009.
  31. Wilson, T.W. and Stewart, C., 2013, Volcanic ash. In Bobrowsky, P., Encyclopedia of Natural Hazards, Springer, New York, 1000p.
  32. Wilson, T.M., Stewart, C., Daniels, V.S., Leonard, G.S., Johnston, D.M., Cole, J.W., Wardman, J., Wilson, G. and Barnard, S.T., 2012, Volcanic ash impacts on critical infrastructure, Journal of Physics and Chemistry of the Earth, 45, 5-23.
  33. Wilson, G., Wilson T.M., Deligne, N.I. and Cole, J.W., 2014, Volcanic hazard impacts to critical infrastructure: A review. Journal of Volcanology and Geothermal Research, 286, 148-182. https://doi.org/10.1016/j.jvolgeores.2014.08.030
  34. Witham, C.S., Oppenheimer, C. and Horwell, C.J., 2005, Volcanic ash leachates: a review and recommendations for sampling methods, Journal of Volcanology and Geothermal Research, 141, 299-326. https://doi.org/10.1016/j.jvolgeores.2004.11.010
  35. Yasuda, N., Kajitani, Y., Tatano, H. and Onodera, S., 2011, The economic influence on the civil aviation by the large scale eruption in Iceland. Annals of Disaster Prevention Research Institute, Kyoto University, 54A, 59-65. (in Japanese)
  36. Yun, S.H., Ban, Y.B. and Chang, C.W., 2019, Analysis of global volcanic activity during 2018, the Journal of the Petrological Society of Korea, 28, 39-52. (in Korean) https://doi.org/10.7854/JPSK.2019.28.1.39
  37. Zimanowski, B., 2000, Physics of phreatomagmatism. Part 1: explosion physics. Journal of Terra Nostra, 6, 515-523.