• Title/Summary/Keyword: 광감작제

Search Result 8, Processing Time 0.018 seconds

직업환경을 위한 TLV의 근거 - PHENOTHIAZINE

  • Kim, Chi-Nyeon
    • 월간산업보건
    • /
    • s.295
    • /
    • pp.11-14
    • /
    • 2012
  • Phenothiazine의 직업적 노출기준(TLV-TWA)은 $5mg/m^3$으로 권고되었다. TLV-TWA의 수준은 피부자극과 변색, 각막염 그리고 태양광에 직접 노출되었을 때 나타나는 광감작반응의 가능성을 최소화하기 위해 설정되었다. 고용량의 phenothiazine을 경구 투여하면 간과 신장이 손상되며 용혈성의 빈혈이 발생한다. Phenothiazine의 피부흡수에 의한 전신 독성이 증명되어 피부흡수 "Skin" 경고주석을 권고하였다. 감작제(SEN)와 발암성 경고주석 그리고 TLV-STEL을 설정하기에는 유용한 자료가 부족하다.

  • PDF

Antimicrobial Effects of 5-Aminolevulinic Acid Mediated Photodynamic Therapy against Pathogenic Bacteria (병원성세균에 대한 5-Aminolevulinic Acid로 중재된 광역학치료의 항균효과)

  • Pil Seung, Kwon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.4
    • /
    • pp.273-278
    • /
    • 2022
  • This study evaluates the improved effect of photodynamic therapy (PDT) by subjecting pathogenic bacteria to a combination of 630 nm light-emitting diode (LED) and 5-aminolevulinic acid (ALA). Bacterial suspensions of 1.5×104 cells/mL were diluted and exposed to ALA concentrations of 10, 5, 2.5, 1.25, and 0.625 mg/mL, incubated for 30 minutes, followed by irradiation with 630 nm LED (18 J/cm2 ). The non-irradiated P. aeruginosa group and the group administered only LED light averaged 415 and 245 colonies, respectively. Conversely, the PDT group showed an average of 109, 225, 297, and 285 colonies at concentrations of 10, 5, 2.5, and 1.25 mg/mL of ALA. Evaluating the effect on E. faecalis revealed an average of 8,750 and 8,000 colonies in the group that did not receive the control photosensitizer and the group exposed to light alone, respectively. However, an average of 0, 2350, 4825, and 7475 colonies at concentrations of 5, 2.5, 1.25, and 0.625 mg/mL ALA were determined for the PDT groups. In conclusion, better inhibitory effects were observed for E. faecalis than for P. aeruginosa. Moreover, our results validate the possibility of improved PDT efficacy using a combination of ALA and 630 nm LED.

Inactivation of Candida albicans Biofilm by Radachlorin-Mediated Photodynamic Therapy (라다클로린으로 매개된 광역학치료에 의한 백색 캔디다 바이오필름의 비활성)

  • Kwon, Pil Seung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.4
    • /
    • pp.273-278
    • /
    • 2015
  • The purpose of this study was to evaluate the in-vitro efficacy of PDT using red light emitting diode (LED) with Radachlorin for biofilm inhibition of clinical Candida albicans isolates. The suspensions containing C. albicans at $9{\times}10^8CFU/mL$ were prepared on yeast nitrogen base containing 5% glucose. The biofilm formation was grown for 3 h after seeding suspensions each 100 ul on a 96-well plate and then supernatant was discarded. Each well was treated with $0.39{\mu}g/mL$ from $50{\mu}g/mL$ concentrations of Radachlorin on adherent biofilm. After a 30-minute incubation, light was irradiated for 30, 60, or 90 minutes using the following light source of wavelength 630 nm LED, at energy densities of 14, 29, and $43J/cm^2$. Afterwards, all supernatant was removed and dried. Adherent cells were stained with safranin O and dried. The cell viability was measured using a microplate reader at 490 nm. Also, a fluorescent signal on C. albicans was observed by saturation of a photosensitizer. In conclusion, a significant inhibition of 72.5% was observed to C. albicans on biofilm at the Radachlorin dose of $50{\mu}g/mL$ with 630 nm LED. The Photosensitizer (Radachlorin) was adequate at 30 minuttes for C. albicans. Overall, the results showed that inhibition of biofilm formation was Radachlorine dose-dependent. The results suggest that PDT, using Radachlorin with 630 nm LED, is able to decrease biofilm formation of C. albicans.

Photodynamic effect of Photofrin and Radachlorin against Staphylococcus aureus and Staphylococcus epidermidis (황색포도알균과 표피포도알균에 대한 포토프린과 라다클로린의 광역학 효과)

  • Seo, Choong-Won;Ryu, Jae-Gi;Kwon, Pil-Seung
    • Journal of Digital Convergence
    • /
    • v.12 no.6
    • /
    • pp.407-414
    • /
    • 2014
  • The aim of this study was to evaluate the photodynamic therapy effects against staphylococci using Photofrin and Radachlorin with Light emitting diode(LED). Experimental methods, The bacterial suspensions containing Staphylococcus aureus and Staphylococcus epidermidis at $1{\times}10^5$ were prepared and diluted to different concentrations of photosensitizer, Photofrin or Radachlorin, on 1.25, 2. 5,5 and $10{\mu}g/ml$. The bacterial suspensions were exposed to 630 and 670 nm LED light at the energy density of 14.4 and $19.8J/cm^2$, respectively. The CFU results of S. aureus and S. epidermidis were showed 33 and 50 colony forming at $5{\mu}g/ml$ of Photofrin, respectively and both of them perfectely were dead at $5{\mu}g/ml$ of Radachlorin. The fluorescent intensity by flow cytometry was showed the increase in the dead cells than the normal cells. In the TEM photograph, the damage of bacterial membrane and the distortion of cell morphology were observed. These results suggest that photodynamic therapy combine with Photofrin and Radachlorin can be applied a new modality for antibacterial therapy.

Distribution Patterns in the Tumor Tissue and Normal Tissue according to the Administration Methods of ALA and ALA-Methylester (ALA 및 ALA-Methylester의 투여에 따른 종양조직 및 정상조직에의 분포양상에 대한 연구)

  • Chung Phil-Sang;Jung Sang-Oun;Ahn Jin-Chul;Lee Sang-Joon;Yoon Jun-Sik
    • Korean Journal of Head & Neck Oncology
    • /
    • v.19 no.1
    • /
    • pp.21-24
    • /
    • 2003
  • Objectives: In this report, we confirmed the distributed pattern of ALA and ALA-methylester in normal and tumor-bearing region. Materials and Methods: ALA and ALA-methylester were administered to nude mouse by intratumoral, subcutaneous and intravenous injection. After injection, the fluorescence in normal and tumor region was measured by LESA (laser electronic spectrum analyzer). Results: The tumor-specificity of ALA and ALA-methylester was shown in the case of intratumoral injection. In all case, the fluorescence caused by ALA and ALA-methylester was maximally increased in 2 hours after injection. Then while the fluorescence level was rapidly decreased to control level in normal region, it was still remained in tumor region. Conclusion: According to this result, The intratumoral injection was more efficient administration method for PDT/PDD than subcutaneous and intravenous injection.

Effect of 850 nm near-infrared light emitting diode irradiation on the production of 5-aminolevulinic acid in Rhodobacter sphaeroides (Rhodobacter sphaeroides에서 5-aminolevulinic acid 생산에 대한 850 nm 근적외선 발광다이오드 조사 효과)

  • Mo, SangJoon
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.3
    • /
    • pp.217-223
    • /
    • 2021
  • 5-aminolevulinic acid (ALA) is a representative photosensitizer used in numerous fields including cancer diagnosis and treatment. In this study, experiments were conducted to optimize the growth of Rhodobacter sphaeroides and production of ALA through LED irradiation of various wavelengths, addition of organic acid precursors of ALA, and changes in glucose concentration. After 72 h cultivation, the 850 nm wavelength LED irradiated at the same light intensity as the incandescent lamp increased the growth of R. sphaeroides and the production of ALA about 1.5- and 1.8-fold as compared with the control, respectively (p <0.0001 and p <0.0001). As a result of culturing R. sphaeroides by irradiating an LED with a wavelength of 850 nm after adding organic acid to the final concentration of 5 mM in culture medium, the production of ALA was increased about 2.8-fold in medium supplemented with pyruvic acid compared with the control (p <0.0001). In addition, the growth of the strain and the production of ALA were increased about 2.9- and 3.4-fold in medium supplemented with 40 mM glucose compared to the control which added only 5 mM pyruvic acid, respectively (p <0.0001 and p <0.0001). The yield of ALA per cell dry mass was about 1.4 folds higher than that of the control in 20 and 40 mM glucose, respectively (p <0.001). In conclusion, the growth of R. sphaeroides and production of ALA were increased by 850 nm wavelength LED irradiation. It also optimized the growth of R. sphaeroides and production of ALA through organic acid addition and glucose concentration changes.

Photodynamic Therapy induced Cell Death using ALA and 632nm Diode Laser in A549 Lung Cancer Cells (A549 폐암세포주에서 ALA와 632nm Diode Laser를 이용한 광역학치료 유도성 세포사)

  • Kim, Youn Seup;Park, Jae Seuk;Jee, Young Koo;Lee, Kye Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.2
    • /
    • pp.178-186
    • /
    • 2004
  • Background : Photodynamic therapy (PDT) is a new therapeutic method aimed at the selective destruction of cancer cells. The outcome is death of cancer cells through apoptosis or necrosis. The aim of this study was to investigate the characterization of PDT induced cell death in A549 lung cancer cells. Materials and methods : A549 cells were used as the lung cancer cell. 5 aminolevulinic acid (ALA) was used as the photosensitizer and a 632nm diode laser (Biolitec, Germany) as the light source. Cells were incubated with various concentrations of ALA. The 632nm diode laser was then administered for various laser irradiation times. The treated cells were incubated with 24, 48 and 72 hours. The cell viabilities were measured using the crystal violet assay and light microscopy. To observe the cell death mechanism after PDT, cells were observed under fluorescence microscopy after double staining with Hoechst 33342 and propium iodide after PDT. Results : In the crystal violet assay at 24 hours after PDT with a $3.2J/cm^2$ laser irradiation power, the cell viabilities were $89.56{\pm}4.11$, $87.67{\pm}5.48$, and $69.37{\pm}8.84$ with ALA concentrations of 10, 100, and $1mg/m{\ell}$, respectively. In crystal violet assay at 24 hours after PDT with $1mg/m{\ell}$ of ALA, the cell viabilities were $74{\pm}19.85$, $55{\pm}6.1$, and $49.06{\pm}16.64%$ with 1.6, 3.2 and $6.4J/cm^2$ laser irradiation powers, respectively. However, increasing the interval time after PDT did not change the cell viabilities. In the apoptosis assay, photodynamic therapy was inducing the apoptotic cell death. Conclusions : This study shows the apoptotic anticancer effect of photodynamic therapy in A549 lung cancer cells. However, further evaluations with other cancer cells and photosensitizers are necessary.

The Anticancer Effect and Mechanism of Photodynamic Therapy Using 9-Hydroxypheophorbide-a and 660 nm Diode Laser on Human Squamous Carcinoma Cell Line. (9-hydroxypheophorbide-a와 660 nm 다이오드 레이저를 이용한 광역학치료의 항암효과와 치료기전에 대한 연구)

  • Ahn, Jin-Chul
    • Journal of Life Science
    • /
    • v.19 no.6
    • /
    • pp.770-780
    • /
    • 2009
  • A new photosensitizer, 9-Hydroxypheophorbide-a (9-HpbD-a), was derived from Spirulina platensis. We conducted a series of experiments, in vitro and in vivo, to evaluate the anticancer effect and mechanism of photodynamic therapy using 9-HpbD-a and 660 nm diode lasers on a squamous carcinoma cell line. We studied the cytotoxic effects of pheophytin-a, 9-HpbD-a, 9-HpbD-a red and 660 nm diode lasers in a human head and neck cancer cell line (SNU-1041). Cell growth inhibition was determined by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. The effects of 9-HpbD was higher than those of 9-HpbD-a red or pheophytin-a in PDT. We then tested the cytotoxic effects of 9-hydroxypheophorbide-a (9-HpbD-a) in vitro. The cultured SNU-I041 cells were treated with serial concentrations of 9-HpbD-a followed by various energy doses (0, 0.1, 0.5, 3.2 J/$cm^{2}$) and by various interval times (0, 3, 6, 9, 12 hr) until laser irradiation, then MTT assay was applied to measure the relative inhibitory effects of photodynamic therapy (PDT). Optimal laser irradiation time was 30 minutes and the cytotoxic effects according to incubation time after 9-HpbD-a treatment increased until 6 hours, after which it then showed no increase. To observe the cell death mechanism after PDT, SUN-I041 cells were stained by Hoechst 33342 and propidium iodide after PDT, and observed under transmission electron microscopy (TEM). The principal mechanism of PDT at a low dose of 9-HpbD-a was apoptosis, and at a high dose of 9-HpbD-a it was necrosis. PDT effects were also observed in a xenografted nude mouse model. Group I (no 9-HpbD-a, no laser irradiation) and Group II (9-HpbD-a injection only) showed no response (4/4, 100%), and Group III (laser irradiation only) showed recurrence (1/4,25%) or no response (3/4, 75 %). Group IV (9-HpbD-a + laser irradiation) showed complete response (10/16, 62.5%), recurrence (4/16, 25%) or no response (2/16, 12.5%). Group IV showed a significant remission rate compared to other groups (p<0.05). These results suggest that 9-HpbD-a is a promising photosensitizer for the future and that further studies on biodistribution, toxicity and mechanism of action would be needed to use 9-HpbD-a as a photosensitizer in the clinical setting.