• Title/Summary/Keyword: 광가교 고분자

Search Result 36, Processing Time 0.028 seconds

Preparation and Properties of Crosslinked Thermo-responsive Poly(N-isopropylacrylamide) Gel Materials For Smart Windows - Effect of Glycerol Content in Water/Glycerol Solvent - (스마트 윈도우용 가교 열감응성 폴리(N-이소프로필아마이드) 겔 소재의 제조 및 특성 - 물/글리세롤 혼합용매 중의 글리세롤 함량의 영향 -)

  • Park, Jae-Hyong;Kim, Il-Jin;Lee, Dong-Jin;Sim, Jae-Hak;Song, Min-Seop;Lee, Young-Hee;Yoo, Jung-Whan;Kim, Han-Do
    • Clean Technology
    • /
    • v.24 no.2
    • /
    • pp.112-118
    • /
    • 2018
  • Thermo-responsive polymers that exhibit phase transition in response to temperature change can be used as materials for smart windows because they can control solar light transmission depending on the outside temperature. The development of thermo-responsive polymers for smart windows that can be used over a wide temperature range is desirable. To obtain high performance smart windows materials, three-dimensional thermo-responsive poly(N-isopropylacrylamide) (PNIPAm) gels were prepared by free radical polymerization from monomer N-isopropylacrylamide, N, N'-methylenebis acrylamide (MBAm) as a crosslinking agent, ammonium persulfate (APS) as a strong oxidizing agent/tetramethylene diamine as a catalyst, and a mixture of two solvents (water/glycerol). This study examined the effect of glycerol content on the lower critical solution temperature (LCST), freezing temperature and the solar light transmittance of crosslinked PNIPAm gel films. The LCST and freezing temperature of PNIPAm gel films were found to be significantly decreased from 34.3 and $6.3^{\circ}C$ to 28.2 and $-6.5^{\circ}C$ with increasing glycerol content from 0 wt% to 10 wt%, respectively. It was found that the transparent PNIPAm gel films at $25^{\circ}C$ (temperature < LCST) were converted to translucent gels at higher temperature ($45^{\circ}C$) (temperature > LCST). These results suggested that the crosslinked PNIPAm gel materials prepared in this study could have high potential for application in smart glass materials.

Thermotropic Behavior of Hydroxypropyl Chitosans Bearing Cholesteryl and Acryloyl Groups (콜레스테릴과 아크릴로일 그룹을 지닌 하이드록시프로필 키토산들의 열방성 거동)

  • 김장훈;정승용;마영대
    • Polymer(Korea)
    • /
    • v.28 no.1
    • /
    • pp.41-50
    • /
    • 2004
  • A new hydroxypropyl chitosan capable of forming a thermotropic liquid crystalline phase and two kinds of derivatives based on the hydroxypropyl chitosan (6-cholesteryloxycarbonylpentoxypropyl) chitosans (CHPCTs) and acrylic acid esters of CHPCT (CHPCTEs) were synthesized. The crosslinked films with liquid crystalline order were also prepared by photocrosslinking CHPCTE in mesophase. The liquid crystalline properties for all the samples and the swelling behavior of the crosslinked samples in acetone were investigated. In contrast with the hydroxypropyl chitosan, all the uncrosslinked cholesteryl-bearing samples farmed monotropic cholesteric phases with left-handed helicoidal structures and exhibited reflection colors over the full cholesteric range. This is the first report of a thermotropic cholesteric liquid crystalline chitosan derivative with reflection bands in the visible region. Both the optical pitches (λ$\_$m/'S) of CHPCT and CHPCTE decrease with temperature or with cholesteryl content at a given temperature. However, the λ$\_$m/ of CHPCT was larger than that of CHPCTE at the same temperature and at the same cholesteryl content. All the crosslinked samples did not display reflection colors, indicating that the cholesteric structure of CHPCTE significantly changes upon crosslinking. The two-dimentional anisotropic swelling characteristic of liquid crystalline networks was observed for all the crosslinked samples.

Modification of Water-borne Polyurethane Using Benzophenone Crosslinker (Benzophenone 가교제를 이용한 수분산 폴리우레탄 개질)

  • Kim, HyeokJin;Kim, Jin Chul;Chang, SangMok;Seo, BongKuk
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.221-226
    • /
    • 2016
  • Production of eco-friendly and biologically harmless materials is strongly required in all industries. In particular, reducing volatile organic compounds in coating processes is extremely important to secure worker's safety. During recent two decades, extensive research works on water-borne polyurethane dispersion (PUD) have been continuously developed as an alternative to solvent-borne polyurethane. However, PUD was shown inferior mechanical properties to the organic solvent-borne polyurethane due to a limit to the molecular weight increase, which resulted in the limit of applications. To overcome this drawback, several approaches have been examined such as polymer blends and thermal/radiation induced crosslinking. Among these methods, the radiation curing system was suitable for industrialization because of the high crosslinking density and fast curing speed. In this study, we overcame the drawback for PUD via introducing benzophenone radiation curable units to PUD. We synthesized PUD films which possessed good dispersion in water for 30 days, increased Tg and Td more than $5^{\circ}C$ after UV curing film as well as improved young's modulus more than double.

Variation of Adhesion Characteristics of Acryl Copolymer/Multi-functional Monomer Based PSA by UV Curing (자외선 경화에 의한 아크릴 공중합체/다관능성 단량체 복합 감압점착제의 접착특성 변화)

  • Ryu, Chong-Min;Pang, Bei-Li;Kim, Hyung-Il;Park, Ji-Won;Lee, Seung-Woo;Kim, Hyun-Jung;Kim, Kyung-Man
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.315-320
    • /
    • 2012
  • Ultra violet (UV) curable pressure sensitive adhesives (PSA) were prepared by controlling both the structure of acryl copolymer and the functionality and content of multi-functional monomers. Acryl copolymer worked as the base polymer for giving the tackiness. Multi-functional monomers were used to vary the crosslinked structure and the degree of crosslink. Acryl copolymer showed the reduced peel strength after UV curing by decreasing the content of 2-ethylhexyl acrylate in the monomer composition. Both the peel strength of PSA and the content of residue found on silicon wafer decreased after UV curing by increasing the functionality of multi-functional monomers. UV curable PSA containing 20 phr six-functional monomer showed the higher peel strength before UV curing and the lower peel strength and the least residue on silicon wafer after UV curing.

Preparation of Polyacrylate-Based Non-Reinforced Anion Exchange Membranes via Photo-Crosslinking for Reverse Electrodialysis (역전기투석용 광가교형 폴리아크릴레이트계 음이온교환막 제조)

  • Tae Hoon Kim;Seok Hwan Yang;Jang Yong Lee
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.70-78
    • /
    • 2024
  • A photo-crosslinked anion exchange membrane (AEM) based on quaternary-aminated polyacrylates was developed for reverse electrodialysis (RED). Although reverse electrodialysis is a clean and renewable energy generation system, the low power output and high membrane cost are serious obstacles to its commercialization. Cross-linked AEMs without any polymer supporters were fabricated through photo-crosslinking between polymer-typed acrylates with anion conducting groups, in particular, polymer-typed acrylates were synthesized based on engineering plastic with outstanding mechanical and chemical property. The fabricated membranes showed outstanding physical, chemical, and electrochemical properties. The area resistance of the fabricated membranes (CQAPPOA-20, CQAPPOA-35, and CQAPPOA-50) were ~50% lower than that of AMV (2.6 Ω cm2). Moreover, the transport number of CQAPPOA-35 wase comparable to that of AMV, despite the thin thickness (40 ㎛) of the fabricated membranes. The RED stack with the CQAPPOA-35 membrane provided an excellent maximum power density of 2.327 W m-2 at a flow rate of 100 mL min-1, which is 15% higher than that (2.026 W m-2) of the RED stack with the AMV membrane. Considering easy fabrication process by UV photo-crosslinking and outstanding RED stack properties, the CQAPPOA-35 membrane is a promising candidate for REDs.

Preparation of Polysiloxane Composite Films with Microphase-Separated Silicone Oiol by Photocrosslinking (광가교 반응에 의한 미세 상 분리된 실리콘 오일을 함유하는 폴리실록산 복합체 필름의 제조)

  • 이정분;김정수;강영구;김동욱;이창진
    • Polymer(Korea)
    • /
    • v.27 no.1
    • /
    • pp.3-8
    • /
    • 2003
  • Polysiloxanes with methacrylate groups at both terminals were synthesized by a hydrosilylation reaction between allyl methacrylate and hydride-terminated polysiloxanes. The polysiloxane methacrylates with high molecular weights could be prepared through the reaction of polysiloxane methacrylates and octamethylcyclotetrasiloxane with an acid catalyst. The structures of the prepared polysiloxane methacrylates were verified by $^1$H- and $^{29}Si-NMR.$ The polysiloxane methacrylates were freely miscible with silicone oils. Polysiloxane films with microphase-separated liquid silicone oil were prepared by photo-crosslinking the mixture of polysiloxane methacrylates and silicone oil. Scanning electron microscopy (SEM) of the films showed that the size of silicone oil droplets became smaller with a lower loading of silicone oil, lower molecular weight of polysiloxane methacrylate, and lower molecular weight of silicone oil.

Effects of Fabrication Conditions on Electro-optic Properties of UV-Cured Polymer/Liquid Crystal Composite Films (UV 경화형 고분자/액정 복합체의 제조 조건에 따른 전기광학적 특성)

  • Park, Se Kwang;Park, Lee Soon;Keum, Chang Dae;Seok, Jae Wook;Ahn, Won Sool
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.579-584
    • /
    • 1998
  • Polymer dispersed liquid crystal(PDLC) composite films were made by polymerization induced phase separation method using UV-curing to investigate the effect of fabrication conditions, such as photoinitiator concentration, film thickness, polymerization temperature, and electric field during polymerization, etc., on the electro-optic properties. As the amount of photoinitiator increased, the driving voltage of PDLC device increased due to the increase of small-size liquid crystal phases. This was considered as the results from the increased interfacial area between liquid crystal (LC) and polymer matrix, since LC molecules at the interfacial regions were relatively difficult to response for the applied electric field. When the higher molecular weight oligomer (PTDA-1000) was used as matrix, the initial transmittance was observed to be relatively higher than that for the lower molecular weight oligomer (PTDA-250). Saturation transmittance for PTDA-1000 was observed at relatively lower voltage than that for PTDA-250, of which transmittance was not saturated even at 60 V. As polymerization temperature increased, the initial transmittance of resulting PDLC film increased due to the larger LC droplets formation and the more matched refractive index between LC and matrix than those cases for the lower polymerization temperature. Though driving voltage decreased for the thinner film, it was considered that optimum thickness of the film should be maintained to get some practical contrast, which is the ratio of off- and on-state transmittance. Furthermore, electro-optic properties such as initial transmittance, driving voltage, and response time were observed to be considerably affected by application of external field during polymerization.

  • PDF

Thermotropic Liquid Crystalline Behavoir of Hydroxypropyl Celluloses Containing Cyanoazobenzene and Their Photocrosslinked Films (시아노아조벤젠을 함유한 히드록시프로필 셀룰로오스 및 그 광가교 필름들의 열방성 액정 거동)

  • Kim, Hyo-Gap;Jeong, Seung-Yong;Yang, Si-Yeul;Ma, Yung-Dae
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.76-87
    • /
    • 2012
  • Three kinds of hydroxypropyl cellulose (HPC) derivatives, [6-{4-(4-cyanophenylazo)phenoxy}]hexyloxypropyl celluloses (CAHPCs) with degree of etherification (DET) ranging from 0.4 to 3, fully substituted acrylic acid esters of HPC (HPCA) and CAHPCs (CAHPCAs) were synthesized. The crosslinked HPCA (HPCAG) and CAHPCAs (CAHPCAGs) were also prepared by exposing thermotropic mesophases of HPCA and CAHPCAs to UV light. Both CAHPCs and CAHPCAs with DET ${\leq}$ 1.2, as well as HPC and HPCA, formed enantiotropic cholesteric phases whose optical pitches(${\lambda}_m$'s) increase with temperature, wheras both CAHPCs and CAHPCAs with DET ${\geq}$ 1.4 showed monotropic nematic phases. CAHPCAGs with DET ${\leq}$ 1.2, as well as CAHPCAs with DET ${\leq}$ 1.2, exhibited reflection colors in a wide temperature range. On the other hand, CAHPCAGs with DET ${\geq}$ 1.4, as well as CAHPCAs with DET ${\geq}$ 1.4, showed Schileren textures typical of nematic phase, indicating that the liquid crystalline structure is virtually locked upon photocrosslinking. The isotropization temperatures($T_i$'s) of both CAHPCAs and CAHPCAGs decreased with increasing DET. The $T_i$ of CAHPCAG, however, was higher than that of CAHPCA at the same DET. Moreover, the temperature dependence of ${\lambda}_m$ of CAHPCAGs was much weaker than that of CAHPCAs.

Preparation of Water-Resistant Humidity Sensor Using Photocurable Reactive Oligomers Containing Ionene Unit and Their Properties (이온넨 단위를 가지는 광경화성 반응성 올리고머를 이용한 내수성 습도센서의 제조 및 감습 특성)

  • Jeon, Young-Min;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.19-25
    • /
    • 2009
  • New polyelectrolytes derived from ionene-containing photocurable reactive oligomer (PIDM) were prepared for water-resistant humidity-sensitive membranes. The mixture of PIDM, hexamethylene dimethacrylate (HDM), pentaerythritol triacrylate dimer (SP1013), and photoinitiator was simultaneously coated on the sensor electrode with photoinitiated radical polymerization. The pretreatment of the substrates with vinyl-type silane-coupling reagent was performed for improving the water durability and stability of the sensors at high temperature and humidity. When the resistance dependences on the relative humidity of the crosslinked PIDMs were measured, it was found that the resistance varied three orders of magnitude between 20 and 90%RH, which was required for the humidity sensor operating at ambient humidity. Their hysteresis, temperature dependence, response time, water durability, and high temperature/humidity stabilities were measured and evaluated as a humidity-sensing membrane.

The Effects of Coupling Agent and Crosslinking Agent in the Synthesis of Acrylic Pressure Sensitive Adhesive for Polarizer Film (편광필름용 아크릴 점착제의 합성에서 커플링제와 가교제의 효과)

  • Lim, Chang-Hyuk;Ryu, Hoon;Cho, Ur-Ryong
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.319-325
    • /
    • 2009
  • The solution polymerization was conducted to synthesize pressure sensitive adhesive for polarizer film using acrylic monomers. 2-Ethylhexylacrylate, butylacrylate, acrylic acid were used as acrylic monomers. The ratio was 2-ethylliexylacrylate:butylacrylate:acrylic acid=25:50:3.6 by reflecting $-40^{\circ}C$ of glass transition temperature in the pressure sensitive adhesive. When 1 wt% of coupling agent was added to the polymerized pressure sensitive adhesive, the light transmissivity was significantly increased. This result is due to the enhancement of adhesive power against liquid crystal cell by Si-O bond of coupling agents. Cross-linking agent was added by 0.5, 1.0, and 1.5 wt% with respect to the synthesized polymer. Initial tackiness decreased, while cohesion increased with increasing crosslinking agent. In the analysis of contact angle, the increase of crosslinking agents yielded the enhancement of surface energy, resulting in the decrease of contact angle. From the measurement of heat resistance, the acrylic pressure sensitive adhesive showed excellent heat resistance regardless of change in temperature and contents in crosslinking agent. In the observation of a cutting plane, the increased crosslinking agent represented a smoother and cleaner section. Comprehensively, the optimum additive amount of crosslinking agent was determined to be 1.0 wt% to monomer.