DOI QR코드

DOI QR Code

Thermotropic Liquid Crystalline Behavoir of Hydroxypropyl Celluloses Containing Cyanoazobenzene and Their Photocrosslinked Films

시아노아조벤젠을 함유한 히드록시프로필 셀룰로오스 및 그 광가교 필름들의 열방성 액정 거동

  • Kim, Hyo-Gap (Center for Photofunctional Energy Materials, Dankook University) ;
  • Jeong, Seung-Yong (Center for Photofunctional Energy Materials, Dankook University) ;
  • Yang, Si-Yeul (Center for Photofunctional Energy Materials, Dankook University) ;
  • Ma, Yung-Dae (Center for Photofunctional Energy Materials, Dankook University)
  • 김효갑 (단국대학교 광 에너지 연구센터) ;
  • 정승용 (단국대학교 광 에너지 연구센터) ;
  • 양시열 (단국대학교 광 에너지 연구센터) ;
  • 마영대 (단국대학교 광 에너지 연구센터)
  • Received : 2011.07.20
  • Accepted : 2011.10.29
  • Published : 2012.01.25

Abstract

Three kinds of hydroxypropyl cellulose (HPC) derivatives, [6-{4-(4-cyanophenylazo)phenoxy}]hexyloxypropyl celluloses (CAHPCs) with degree of etherification (DET) ranging from 0.4 to 3, fully substituted acrylic acid esters of HPC (HPCA) and CAHPCs (CAHPCAs) were synthesized. The crosslinked HPCA (HPCAG) and CAHPCAs (CAHPCAGs) were also prepared by exposing thermotropic mesophases of HPCA and CAHPCAs to UV light. Both CAHPCs and CAHPCAs with DET ${\leq}$ 1.2, as well as HPC and HPCA, formed enantiotropic cholesteric phases whose optical pitches(${\lambda}_m$'s) increase with temperature, wheras both CAHPCs and CAHPCAs with DET ${\geq}$ 1.4 showed monotropic nematic phases. CAHPCAGs with DET ${\leq}$ 1.2, as well as CAHPCAs with DET ${\leq}$ 1.2, exhibited reflection colors in a wide temperature range. On the other hand, CAHPCAGs with DET ${\geq}$ 1.4, as well as CAHPCAs with DET ${\geq}$ 1.4, showed Schileren textures typical of nematic phase, indicating that the liquid crystalline structure is virtually locked upon photocrosslinking. The isotropization temperatures($T_i$'s) of both CAHPCAs and CAHPCAGs decreased with increasing DET. The $T_i$ of CAHPCAG, however, was higher than that of CAHPCA at the same DET. Moreover, the temperature dependence of ${\lambda}_m$ of CAHPCAGs was much weaker than that of CAHPCAs.

세 종류의 히드록시프로필 셀룰로오스(HPC) 유도체들, 즉 에테르화도(DET)가 0.4에서 3의 범위에 있는 [6-{4'-(4-시아노페닐아조)펜옥시}]헥실옥시프로필 셀룰로오스들(CAHPCs), 완전치환 HPC의 아크릴산 에스터 (HPCA)와 CAHPC의 아크릴산 에스터들(CAHPCAs)을 합성하였다. 또한 HPCA와 CAHPCAs가 형성하는 열방성 액정 상에 UV 광을 조사시킴에 의해 가교된 HPCA(HPCAG)와 CAHPCAs(CAHPCAGs)를 제조하였다. HPC 그리고 HPCA와 동일하게 DET ${\leq}$ 1.2인 CAHPCs와 CAHPCAs는 광학피치들(${\lambda}_m$'s)이 온도상승에 의해 증가하는 양방성 콜레스테릭 상을 형성하는 반면 DET ${\geq}$ 1.4인 CAHPCs와 CAHPCAs는 단방성 네마틱 상을 형성하였다. DET ${\leq}$ 1.2인 CAHPCAs와 동일하게 DET ${\leq}$ 1.2인 CAHPCAGs는 넓은 온도범위에서 반사색깔을 나타냈다. 한편, DET ${\geq}$ 1.4인 CAHPCAs와 동일하게 DET ${\geq}$ 1.4인 CAHPCAGs는 네마틱 상의 전형적인 Schlieren 조직을 형성하였다. 이러한 사실은 액정 조직이 광가교에 의해 거의 그대로 고정됨을 시사한다. CAHPCAs와 CAHPCAGs의 액정 상에서 액체 상으로의 전이온도들($T_i$'s)은 DET가 증가함에 따라 낮아졌다. 그러나 DET가 동일할 경우, CAHPCAG가 CAHPCA에 비해 $T_i$는 높았다. 또한 CAHPCAGs가 CAHPCAs에 비해 ${\lambda}_m$의 온도의존성은 대단히 약하였다.

Keywords

References

  1. V. Percec and C. Pugh, Side Chain Liquid Crystal Polymers, C. B. McArdle, Editor, Chapman and Hall, New York, Chap 3, p 30 (1989).
  2. S. Kumaresan and P. Kannan, J. Polym. Sci. Part A: Polym. Chem., 41, 3188 (2003). https://doi.org/10.1002/pola.10910
  3. C. Pugh and A. L. Kiste, Handbook of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, Editors, Wiley-VCH, Weinheim-New York, Vol 3, Chap III, p 123 (1998).
  4. J. Stumpe, Th. Fischer, and H. Menzel, Macromolecules, 29, 2831 (1996). https://doi.org/10.1021/ma951462d
  5. B.-Q. Chen, A. Kameyama, and T. Nishikubo, Macromolecules, 32, 6485 (1999). https://doi.org/10.1021/ma990348i
  6. V. Percec, A. D. Asandei, D. H. Hill, and D. Crawford, Macromolecules, 32, 2597 (1999). https://doi.org/10.1021/ma9900129
  7. M. Sato and M. Mizoi, Polym. J., 36, 607 (2004). https://doi.org/10.1295/polymj.36.607
  8. Y.-W. Kwon, C. H. Choi, and J.-H. Jin, Polymer(Korea), 29, 523 (2005).
  9. M. Zhou and C. D. Han, Macromolecules, 38, 9602 (2005). https://doi.org/10.1021/ma050656i
  10. H. Xie, T. Hu, X. Zhang, H. Zhang, E. Chen, and Q. Zhou, J. Polym. Sci. Part A: Polym. Chem., 46, 7310 (2008). https://doi.org/10.1002/pola.23035
  11. K. Rameshpabu and P. Kannan, J. Appl. Polym. Sci., 104, 2760 (2007). https://doi.org/10.1002/app.25926
  12. Y. Yu and T. Ikeda, J. Photochem. Photobiol. C: Photochem. Rev., 5, 247 (2004). https://doi.org/10.1016/j.jphotochemrev.2004.10.004
  13. N. Tamaoki and T. Kamei, J. Photochem. Photobiol. C: Photochem. Rev., 11, 47 (2010). https://doi.org/10.1016/j.jphotochemrev.2010.09.001
  14. C. Wu, Q. Gu, Y. Huang, and S. Chen. Liq. Cryst., 30, 733 (2003). https://doi.org/10.1080/0267829031000115005
  15. X. Tang, L. Gao, X. Fan, and Q. Zhou, J. Polym. Sci. Part A: Polym. Chem., 45, 1653 (2007). https://doi.org/10.1002/pola.21932
  16. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 32, 446 (2008).
  17. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 33, 58 (2009).
  18. S.-Y. Jeong, H.-M. Son, and Y.-D. Ma, Polymer(Korea), 34, 116 (2010).
  19. T. Hu, H. Xie, J. Xiao, H. Zhang, and E. Chen, Cellulose, 17, 547 (2010). https://doi.org/10.1007/s10570-009-9392-z
  20. C. Jianan, H. Yifang, Y. Jinyue, Y. Shaogiong, and Y. Hua, J. Appl. Polym. Sci., 45, 2153 (1992). https://doi.org/10.1002/app.1992.070451211
  21. T. Fukuda, Y. Tsujii, and T. Miyamoto, Macromol. Symp., 99, 257 (1995). https://doi.org/10.1002/masy.19950990127
  22. K. Arai and Y. Kawabata, Macromol. Rapid Commun., 16, 875 (1995). https://doi.org/10.1002/marc.1995.030161201
  23. P. J. Zheng, C. Wang, X. Hu, K. C. Tam, and L. Li, Macromolecules, 38, 2859 (2005). https://doi.org/10.1021/ma048324l
  24. W. Wang and M.-Z. Wang, Polym. Bull., 59, 537 (2007). https://doi.org/10.1007/s00289-007-0789-2
  25. M. Muller and R. Zentel, Macromol. Chem. Phys., 201, 2055 (2000). https://doi.org/10.1002/1521-3935(20001001)201:15<2055::AID-MACP2055>3.0.CO;2-P
  26. M. Buchel, B. Weichart, C. Minx, H. Menzel, and D. Johannsmann, Phys. Rev. E, 55, 455 (1997). https://doi.org/10.1103/PhysRevE.55.455
  27. E. Yashima, J. Noguchi, and Y. Okamoto, Macromolecules, 28, 8368 (1995). https://doi.org/10.1021/ma00128a054
  28. S. Yang, M. M. Jacob, L. Li, A. L. Cholli, J. Kumar, and S. K. Tripathy, Macromolecules, 34, 9193 (2001). https://doi.org/10.1021/ma010931a
  29. V. Shibaev, A. Bobrovsky, and N. Boiko, Prog. Polym. Sci., 28, 729 (2003). https://doi.org/10.1016/S0079-6700(02)00086-2
  30. T. Ikeda, J. Mater. Chem., 13, 2037 (2003). https://doi.org/10.1039/b306216n
  31. S. K. Yesodha, C. K. Sadashiva Pillai, and N. Tsutsumi, Prog. Polym. Sci., 29, 45 (2004). https://doi.org/10.1016/j.progpolymsci.2003.07.002
  32. K. Ichimura, Chem. Rev., 100, 1847 (2000). https://doi.org/10.1021/cr980079e
  33. Y. Yu, T. Maeda, J. Mamiya, and T. Ikeda, Angew. Chem. Int. Ed., 46, 881 (2007). https://doi.org/10.1002/anie.200603053
  34. M. Yamada, M. Kondo, J. Mamiya, Y. Yu, M. Kinoshita, C. J. Barrett, and T. Ikeda, Angew. Chem. Int. Ed., 47, 4986 (2008). https://doi.org/10.1002/anie.200800760
  35. M. Yamada, M. Kondo, R. Miyasato, Y. Naka, J. Mamiya, M. Kinoshita, A. Shishido, Y. Yu, C. J. Barrett, and T. Ikeda, J. Mater. Chem., 19, 60 (2009). https://doi.org/10.1039/b815289f
  36. T. Yoshino, M. Kondo, J. Mamiya, M. Kinoshita, Y. Yu, and T. Ikeda, Adv. Mater., 22, 1361 (2010). https://doi.org/10.1002/adma.200902879
  37. U. Hrozhyk, S. Serak, N. Tabiryan, T. J. White, and T. J. Bunning, Opt. Express, 17, 716 (2009). https://doi.org/10.1364/OE.17.000716
  38. H. Kikuchi, K. Kaneko, and H. Higuchi, Kobunshi High Polymers, Japan, 59, 465 (2010).
  39. X. Li, R. Wen, Y. Zhang, L. Zhu, B. Zhang, and H. Zhang, J. Mater. Chem., 19, 236 (2009). https://doi.org/10.1039/b812291a
  40. H.-W. Gu, P. Xie, P.-F. Fu, T.-Y. Zhang, and R.-B. Zhang, Adv. Mater., 15, 125 (2005).
  41. N. Zettsu and T. Seki, Macromolecules, 37, 8692 (2004). https://doi.org/10.1021/ma048804c
  42. S.-Y. Jeong, J.-H. Jeong, Y.-D. Ma, and Y. Tsujii, Polymer(Korea), 25, 279 (2001).
  43. L. Wang and Y. Hwang, Liq. Cryst., 30, 1129 (2003). https://doi.org/10.1080/02678290310001599279
  44. L. Wang and Y. Hwang, Macromolecules, 37, 303 (2004). https://doi.org/10.1021/ma0344893
  45. B. Huang, J. J. Ge, Y. Li, and H. Hou, Polymer, 48, 264 (2007). https://doi.org/10.1016/j.polymer.2006.11.033
  46. S.-Y. Jeong, J.-Y. Lee, and Y.-D. Ma, Polymer(Korea), 33, 297 (2009).
  47. S.-Y. Jeong, J.-H. Choi, and Y.-D. Ma, Polymer(Korea), 26, 523 (2002).
  48. H. Hou, A. Reuning, J. H. Wendorff, and A. Greiner, Macromol. Chem. Phys., 201, 2050 (2000). https://doi.org/10.1002/1521-3935(20001001)201:15<2050::AID-MACP2050>3.0.CO;2-I
  49. G. V. Levins and D. G. Gray, Macromolecules, 18, 1746 (1985). https://doi.org/10.1021/ma00151a018
  50. W. P. Pawlowski and R. D. Gilbert, J. Polym. Sci. Part B: Polym. Phys., 25, 2293 (1987). https://doi.org/10.1002/polb.1987.090251107
  51. A. A. Craig and C. T. Imrie, Macromolecules, 32, 6215 (1999). https://doi.org/10.1021/ma990525f
  52. H. Takase, A. Natansohn, and P. Rochon, Polymer, 44, 7345 (2003). https://doi.org/10.1016/j.polymer.2003.09.035
  53. F. Guittard, T. Yamagishi, A. Cambon, and P. Sixou, Macromolecules, 27, 6988 (1994). https://doi.org/10.1021/ma00101a042
  54. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 33, 254 (2009).
  55. S. N. Bhadani and D. G. Gray, Mol. Cryst. Liq. Cryst., 99, 29 (1983). https://doi.org/10.1080/00268948308072026
  56. T.-A. Yamagishi, F. Guittard, M. Godinho, A. F. Martins, A. Cambon, and P. Sixou, Polym. Bull., 32, 47 (1994). https://doi.org/10.1007/BF00297413
  57. I. Rusig, M. H. Godinho, L. Varichon, P. Sixou, J. Dedier, C. Filliatre, and A. F. Martins, J. Polym. Sci. Part B: Polym. Phys., 32, 1907 (1994). https://doi.org/10.1002/polb.1994.090321108
  58. J.-H. Kim, S.-Y. Jeong, and Y.-D. Ma, Polymer(Korea), 28, 92 (2004).
  59. J.-H. Kim, S.-Y. Jeong, and Y.-D. Ma, Polymer(Korea), 28, 41 (2004).
  60. J.-H. Kim and Y.-D. Ma, J. Korean Ind. Eng. Chem., 15, 113 (2004).
  61. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 31, 356 (2007).
  62. J. M. G. Cowie, Polymers: Chemistry and Physics of Modern Materials, Chapman and Hall, Inc., New York, Chap 12, p 247 (1991).
  63. H. de Vires, Acta Crystallgr., 4, 219 (1951). https://doi.org/10.1107/S0365110X51000751
  64. S. Chandrasekhar, Liquid Crystals, Cambridge University Press, Cambridge, Chap 4, p 213 (1992).
  65. J. Watanabe, M. Goto, and T. Nagase, Macromolecules, 20, 298 (1987). https://doi.org/10.1021/ma00168a011
  66. T. Yamagishi, Ph. D. dissertation, Kyoto University, 1989.
  67. V. P. Shibaev, Ya. S. Freidzon, and G. S. Kostromin, Liquid Crystalline and Mesomorphic Polymers, V. P. Shibaev and L. Lam Editors, Springer-Verlag, New York, Chap 3, p 77 (1994).