• Title/Summary/Keyword: 관통한계

Search Result 70, Processing Time 0.025 seconds

Prediction of Ballistic Limit for Composite Laminates Subjected to High-velocity Impact Using Static Perforation Test (정적압입 관통 실험을 이용한 복합재 적층판의 고속충격 탄도한계속도 예측)

  • You, Won-Young;Kim, In-Gul;Lee, Seokje;Kim, Jong-Heon
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.21-28
    • /
    • 2013
  • The ballistic limit of Carbon/Epoxy composite laminates with the finite effective area are predicted by using the quasi-static perforation test and semi-empirical formula. The perforation energy were calculated from force-displacement curve in quasi-static perforation test. Also, the actual ballistic limit and penetration energy were obtained through the high-velocity impact test. The quasi-static perforation test and high-velocity impact test were conducted for the specimens with 3 different effective areas. In the high-velocity impact test, the air gun impact tester were used, and the ballistic and residual velocity was measured. The required inputs for the semi-empirical formula were determined by the quasi-static perforation tests and high-velocity impact tests. The comparison between semi-empirical formula and high-velocity impact test results were conducted and examined. The ballistic limits predicted by semi-empirical formula were agreed well with high-velocity impact test results.

Plastic Limit Loads for Slanted Circumferential Through-Wall Cracked Pipes Using 3D Finite-Element Limit Analyses (3차원 유한요소 한계해석을 이용한 원주방향 경사관통균열 배관의 소성한계하중)

  • Jang, Hyun-Min;Cho, Doo-Ho;Kim, Young-Jin;Huh, Nam-Su;Shim, Do-Jun;Choi, Young-Hwan;Park, Jung-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1329-1335
    • /
    • 2011
  • On the basis of detailed 3D finite-element (FE) limit analyses, the plastic limit load solutions for pipes with slanted circumferential through-wall cracks (TWCs) subjected to axial tension, global bending, and internal pressure are reported. The FE model and analysis procedure employed in the present numerical study were validated by comparing the present FE results with existing solutions for plastic limit loads of pipes with idealized TWCs. For the quantification of the effect of slanted crack on plastic limit load, slant correction factors for calculating the plastic limit loads of pipes with slanted TWCs from pipes with idealized TWCs are newly proposed from extensive 3D FE calculations. These slant-correction factors are presented in tabulated form for practical ranges of geometry and for each set of loading conditions.

PWR 운전조건하에서 원주방향 균열을 가진 페라이틱 배관의 파괴 거동에 관한 실험적 연구

  • ;;;;;G. Wilkowski
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.296-301
    • /
    • 1996
  • 이 연구의 목적은 원주방향 균열을 가진 페라이틱 배관의 파괴거동을 실험적으로 평가하는데 있다. 한계하중방법, SC.TNP 방법, R6방법, 그리고 ASME Code방법과 같은 여러 파괴거동 평가 방법의 타당성이 PWR 운전조건(압력:15.5MPa, 온도:228$^{\circ}C$)하에서의 직경 16인치의 대규모 배관파괴실험을 통해 조사된다. 모사지진하중, 단일주파수 사인함수하중, 정하중과 같은 여러 가지 형태의 하중이 배관의 하중지지능력에 미치는 영향이 조사된다. 또한 엘보우부위와 직관부의 영향과 표면균열 및 관통균일의 영향 등도 함께 조사된다. 결과는 다음과 같다. (1) 표면균열을 가진 배관의 파괴거동은 한계하중방법과 SC.TNP 방법에 의해 잘 예측할 수 있다. 반면 관통균열의 경우는 한계하중방법에 의해 잘 예측된다. (2) 모사지진하중하에서는 단일주파수 사인함수하중이나 정하중 하에서 보다 하중지지능력이 크게 예측된다. (3) 엘보우부위와 직관부, 관통균열과 표면균열 사이에 파괴거동에 대한 큰 차이는 없다.

  • PDF

Plastic Limit Loads for Through-Wall Cracked Pipes Using 3-D Finite Element Limit Analyses (3차원 유한요소 한계해석을 이용한 관통균열 배관의 소성한계하중)

  • Huh Nam-Su;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.568-575
    • /
    • 2006
  • The present paper provides plastic limit load solutions of axial and circumferential through-wall cracked pipes based on detailed three-dimensional (3-D) finite element (FE) limit analysis using elastic-perfectly-plastic behavior. As a loading condition, axial tension, global bending moment, internal pressure, combined tension and bending and combined internal pressure and bending are considered for circumferential through-wall cracked pipes, while only internal pressure is considered for axial through-wall cracked pipes. Especially, more emphasis is given for through-wall cracked pipes subject to combined loading. Comparisons with existing solutions show a large discrepancy in short through-wall crack (both axial and circumferential) for internal pressure. In the case of combined loading, the FE limit analyses results show thickness effect on limit load solutions. Furthermore, the plastic limit load solution for circumferential through-wall cracked pipes under bending is applied to derive plastic $\eta\;and\;{\gamma}$-factor of testing circumferential through-wall cracked pipes to estimate fracture toughness. Being based on detailed 3-D FE limit analysis, the present solutions are believed to be meaningful fur structural integrity assessment of through-wall cracked pipes.

Pilot Application of Fire Barrier Penetration Seal Evaluation in Nuclear Power Plant (원자력발전소 방화벽 관통부 성능평가 시범 적용)

  • Park, Jun-Hyun
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.98-104
    • /
    • 2006
  • The Fire Protection Regulatory documents require the fire-resistive rating of fire barrier penetration seals be same as that of fire barriers. Pilot application of penetration seal evaluation for K nuclear plant, built before penetration seal requirements were made, was done. In this evaluation, visual inspection and estimating fire rating by comparing installed configuration with tested configuration of penetration seals, called bounding approach method, were applied. Further improvements for retrofit and maintenance are recommended with penetration seal evaluation results also. The practical use of the methodology adopted in this study and the evaluation result of K nuclear plant will be anticipated for other plant's penetration seal evaluation.

Effect of Internal Pressure on Plastic Limit Loads for Elbows with Circumferential Through-wall Crack under Closing Bending Incorporating Large Geometry Change Effects (대변형 효과를 고려한 원주방향 관통균열 엘보우의 닫힘굽힘 한계하중에 미치는 내압 영향 평가)

  • Hong, Seok-Pyo;Kim, Yun-Jae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1778-1782
    • /
    • 2007
  • Based on three-dimensional (3-D) FE limit analyses, this paper estimates effect of internal pressure on plastic limit loads for elbows with circumferential through-wall crack under in-plane bending incorporating large geometry change effects. Circumferential through-wall crack in extrados is considered. The FE limit analyses using the large geometry change option provide plastic collapse loads (using the twice-elastic-slope method). For the bending mode, closing bending is considered. Other relevant variables affecting plastic limit loads are systematically varied, related to pipe bend geometry (the mean radius, thickness and bend curvature) and defect geometry (the length of circumferential through-wall crack).

  • PDF

The Experimental Study on the Absorbed Energy of Carbon/Epoxy Composite Laminated Panel Subjected to High-velocity Impact (고속 충격을 받는 Carbon/Epoxy 복합재 적층판의 흡수 에너지 예측에 대한 실험적 고찰)

  • Cho, Hyun-Jun;Kim, In-Gul;Lee, Seokje;Woo, Kyeongsik;Kim, Jong-Heon
    • Composites Research
    • /
    • v.26 no.3
    • /
    • pp.175-181
    • /
    • 2013
  • The evaluation and prediction for the absorbed energy, residual velocity, and impact damage are the key things to characterize the impact behavior of composite laminated panel subjected to high-velocity impact. In this paper, the method to predict the residual velocity and the absorbed energy of Carbon/Epoxy laminated panel subjected to high velocity impact are proposed and examined by using quasi-static perforation test and high-velocity impact test. Total absorbed energy of specimen due to the high-velocity impact can be grouped with static energy and kinetic energy. The static energy are consisted of energy due to the failure of the fiber and matrix and static elastic energy, which are related to the quasi-static perforation energy. The kinetic energy are consisted of kinetic energy of moving part of specimen, which are modelled by three modified kinetic model. The high-velocity impact test were conducted by using air gun impact facility and compared with the predicted values. The damage area of specimen were examined by C-scan image. In the high initial impact velocity above the ballistic limit, both the static energy and the kinetic energy are known to be the major contribution of the total absorbed energy.

Plating Technology of Through Silicon Via (TSV전극과 도금기술)

  • Kim, Yu-Sang;Jeong, Gwang-Mi
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.134-135
    • /
    • 2015
  • 실리콘 반도체 칩 가공기술의 미세화는 40년에 걸쳐 전자기기 진보에 큰 공헌을 할 수 있었다. 절반간격(Half Pitch)이라는 최소 패턴크기로 좁아지고 있다. 회로패턴을 평면적으로뿐만 아니라 집적도를 올리는 3차원 실장기술이 중요시 되었다. 종래칩 표면에만 존재했던 접속용 전극을 표면과 뒷면에 붙여 칩을 관통하는 미세실리콘 관통전극(TSV; Through Silicon Via)제조기술로써 TSV는 한계의 반도체기술을 극복하여 한층 더 크게 발전할 가능성을 비추고 있다.

  • PDF

TSV(Through-Silicon-Via) copper filling by Electrochemical deposition with additives (도금 첨가제에 의한 구리의 TSV(실리콘 관통 비아) 필링)

  • Jin, Sang-Hyeon;Jang, Eun-Yong;Park, Chan-Ung;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.175-177
    • /
    • 2011
  • 오늘날 반도체 소자의 성능을 좌우하는 배선폭은 수십 나노미터급으로 배선폭 감소에 의한 소자의 집적은 한계에 다다르고 있다. 또한 2차원 회로 소자의 문제점으로 지적되는 과도한 전력소모, RC Delay, 열 발생 문제등도 쟁점사항이 되고 있다. 이런 2차원 회로를 3차원으로 쌓아올린다면 보다 효율적인 회로구성이 가능할 것이고 이에 따른 성능향상이 클 것이다. 3차원 회로 구성의 핵심기술은 기판을 관통하여 다른 층의 회로를 연결하는 실리콘 관통 전극을 형성하는 것이다.

  • PDF