• Title/Summary/Keyword: 관측주기

Search Result 730, Processing Time 0.025 seconds

The Study of Wave, Wave-Induced Current in CHUNG-UI Beach (충의휴양소 전면 해수욕장의 파랑 및 해빈류에 관한 연구)

  • Chang, Pyong-Sang;Bae, Sung-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.142-149
    • /
    • 2019
  • In this study, the past erosion history and current status in the CHUNG-UI beach of Eulwang-dong, Jung-gu, Incheon-Si, South Korea were investigated and analyzed the wave with wave-induced current to investigate the causes of coastal erosion. As a result, the significant wave height ($H_{1/3}$) was in the range of 0.07~1.57 m and the mean value was 0.21 m. The maximum wave height ($H_{max}$) was in the range of 0.02-4.76m and the mean value was 0.27m. The vertical wave height and cycles were estimated through numerical model experiments of wave transformation. The 50-year frequency design wave height ranged from 0.82m to 3.75m. As a result of the experiment of wave-induced current, wave-induced current in the CHUNG-UI beach was decreased after the installation of the Detached breakwater and the Jetty. On the other hand, when the crest elevation was increased up to 5 m, there was no significant change, but when the crest elevation was increased to 8m, strong wave-induced current occurred around the submerged breakwaters due to lowered depth of water. In addition, the main erosion of the CHUNG-UI beach is due to the intensive invasion of the wave characteristics coming from the outer sea into the white sandy beach. The deformation of the wave centered on the front of the sandy beach caused additional longshore currents flowing parallel to the sandy beach and rip currents in the transverse direction, thus confirming that the longshore sediment was moved out of the front and out of the sea. The results of this study can be used as preliminary data for the recovery of the sand and the selection of efficient erosion prevention facilities.

Application of Terrestrial LiDAR for Displacement Detecting on Risk Slope (위험 경사면의 변위 검출을 위한 지상 라이다의 활용)

  • Lee, Keun-Wang;Park, Joon-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.323-328
    • /
    • 2019
  • In order to construct 3D geospatial information about the terrain, current measurement using a total station, remote sensing, GNSS(Global Navigation Satellite System) have been used. However, ground survey and GNSS survey have time and economic disadvantages because they have to be surveyed directly in the field. In case of using aerial photographs and satellite images, these methods have the disadvantage that it is difficult to obtain the three-dimensional shape of the terrain. The terrestrial LiDAR can acquire 3D information of X, Y, Z coordinate and shape obtained by scanning innumerable laser pulses at densely spaced intervals on the surface of the object to be observed at high density, and the processing can also be automated. In this study, terrestrial LiDAR was used to analyze slope displacement. Study area slopes were selected and data were acquired using LiDAR in 2016 and 2017. Data processing has been used to generate slope cross section and slope data, and the overlay analysis of the generated data identifies slope displacements within 0.1 m and suggests the possibility of using slope LiDAR on land to manage slopes. If periodic data acquisition and analysis is performed in the future, the method using the terrestrial lidar will contribute to effective risk slope management.

Feasibility Study on Producing 1:25,000 Digital Map Using KOMPSAT-5 SAR Stereo Images (KOMPSAT-5 레이더 위성 스테레오 영상을 이용한 1:25,000 수치지형도제작 가능성 연구)

  • Lee, Yong-Suk;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1329-1350
    • /
    • 2018
  • There have been many applications to observe Earth using synthetic aperture radar (SAR) since it could acquire Earth observation data without reference to weathers or local times. However researches about digital map generation using SAR have hardly been performed due to complex raw data processing. In this study, we suggested feasibility of producing digital map using SAR stereo images. We collected two sets, which include an ascending and a descending orbit acquisitions respectively, of KOMPSAT-5 stereo dataset. In order to suggest the feasibility of digital map generation from SAR stereo images, we performed 1) rational polynomial coefficient transformation from radar geometry, 2) digital resititution using KOMPSAT-5 stereo images, and 3) validation using digital-map-derived reference points and check points. As the results of two models, root mean squared errors of XY and Z direction were less than 1m for each model. We discussed that KOMPSAT-5 stereo image could generated 1:25,000 digital map which meets a standard of the digital map. The proposed results would contribute to generate and update digital maps for inaccessible areas and wherever weather conditions are unstable such as North Korea or Polar region.

Feasibility Assessment of Spectral Band Adjustment Factor of KOMPSAT-3 for Agriculture Remote Sensing (농업관측을 위한 KOMPSAT-3 위성의 Spectral Band Adjustment Factor 적용성 평가)

  • Ahn, Ho-yong;Kim, Kye-young;Lee, Kyung-do;Park, Chan-won;So, Kyu-ho;Na, Sang-il
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1369-1382
    • /
    • 2018
  • As the number of multispectral satellites increases, it is expected that it will be possible to acquire and use images for periodically. However, there is a problem of data discrepancy due to different overpass time, period and spatial resolution. In particular, the difference in band bandwidths became different reflectance even for images taken at the same time and affect uncertainty in the analysis of vegetation activity such as vegetation index. The purpose of this study is to estimate the band adjustment factor according to the difference of bandwidth with other multispectral satellites for the application of KOMPSAT-3 satellite in agriculture field. The Spectral band adjustment factor (SBAF) were calculated using the hyperspectral satellite images acquired in the desert area. As a result of applying SBAF to the main crop area, the vegetation index showed a high agreement rate of relative percentage difference within 3% except for the Hapcheon area where the zenith angle was 25. For the estimation of SBAF, this study used only one set of images, which did not consider season and solar zenith angle of SBAF variation. Therefore, long-term analysis is necessary to solve SBAF uncertainty in the future.

Radioanalytical and Spectroscopic Characterizations of Hydroxo- and Oxalato-Am(III) Complexes (방사분석과 분광학을 이용한 Am(III) 가수분해와 옥살레이트 착물 화학종 연구)

  • Kim, Hee-Kyung;Cho, Hye-Ryun;Jung, Euo Chang;Cha, Wansik
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.397-410
    • /
    • 2018
  • When considering the long-term safety assessment of spent-nuclear fuel management, americium is one of the most radio-toxic actinides. Although spectroscopic methods are widely used for the study of actinide chemistry, application of those methods to americium chemistry has been limited. Herein, we purified $^{241}Am$ to obtain a highly pure stock solution required for spectroscopic studies. Quantitative and qualitative analyses of purified $^{241}Am$ were carried out using liquid scintillation counting, and gamma and alpha radiation spectrometry. Highly sensitive absorption spectrometry coupled with a liquid waveguide capillary cell and time-resolved laser fluorescence spectroscopy were employed for the study of Am(III) hydrolysis and oxalate (Ox) complexation. $Am^{3+}$ ions under acidic conditions exhibit maximum absorbance at 503 nm, with a molar absorption coefficient of $424{\pm}8cm^{-1}{\cdot}M^{-1}$. $Am(OH)_3(s)$ colloidal particles formed under near neutral pH conditions were identified by monitoring the absorbance at around 506-507 nm. The formation of ${Am(Ox)_3}^{3-}$ was detected by red-shifts of the absorption and luminescence spectra of 4 and 5 nm, respectively. In addition, considerable enhancements of the luminescence intensities were observed. The luminescence lifetime of ${Am(Ox)_3}^{3-}$ increased from 23 to 56 ns, which indicates that approximately six water molecules are replaced by carboxylate ligands in the inner-sphere of the Am(III). These results suggest that ${Am(Ox)_3}^{3-}$ is formed through the bidentate coordination of the oxalate ligands.

Vulnerability Analyses of Wave Overtopping Inundation by Synthesized Typhoons with Sea-Level Rise (해수면 상승과 빈도 합성태풍이 고려된 월파범람 위험성 분석)

  • Kim, HyeonJeong;Suh, SeungWon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.253-264
    • /
    • 2019
  • Storm surges caused by a typhoon occur during the summer season, when the sea-level is higher than the annual average due to steric effect. In this study, we analyzed the sea-level pressure and tidal data collected in 1 h intervals at Incheon, Kunsan, Mokpo, Seogwipo stations on the Yellow Sea coast to analyze the summer season storm surge and wave overtopping. According to our analyses, the summer mean sea-level rise on the west and south coasts is approximately 20 cm and 15 to 20 cm higher than the annual mean sea-level rise. Changes in sea-level rise are closely related to changes in seasonal sea-level pressure, within the range of 1.58 to 1.73 cm/hPa. These correlated mechanisms generates a phase difference of one month or more. The 18.6 year long period tidal constituents indicate that in 2090, the amplitude of the $M_2$ basin peaks on the southwest coast. Therefore, there is a need to analyze the target year for global warming and sea-level rise in 2090. Wave overtopping was simulated considering annual mean sea-level rise, summer sea level rise, the combined effect of nodal factor variation, and 100-year frequency storm surge. As a result, flooding by wave overtopping occurs in the area of Suyong Bay, Busan. In 2090, overtopping discharges are more than doubled than those in Marine City by the recent typhoon Chaba. Adequate coastal design is needed to prepare for flood vulnerability.

Forest Fire Area Extraction Method Using VIIRS (VIIRS를 활용한 산불 피해 범위 추출 방법 연구)

  • Chae, Hanseong;Ahn, Jaeseong;Choi, Jinmu
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.669-683
    • /
    • 2022
  • The frequency and damage of forest fires have tended to increase over the past 20 years. In order to effectively respond to forest fires, information on forest fire damage should be well managed. However, information on the extent of forest fire damage is not well managed. This study attempted to present a method that extracting information on the area of forest fire in real time and quasi-real-time using visible infrared imaging radiometer suite (VIIRS) images. VIIRS data observing the Korean Peninsula were obtained and visualized at the time of the East Coast forest fire in March 2022. VIIRS images were classified without supervision using iterative self-organizing data analysis (ISODATA) algorithm. The results were reclassified using the relationship between the burned area and the location of the flame to extract the extent of forest fire. The final results were compared with verification and comparison data. As a result of the comparison, in the case of large forest fires, it was found that classifying and extracting VIIRS images was more accurate than estimating them through forest fire occurrence data. This method can be used to create spatial data for forest fire management. Furthermore, if this research method is automated, it is expected that daily forest fire damage monitoring based on VIIRS will be possible.

Research and Application of Satellite Orbit Simulation for Analysis of Optimal Satellite Images by Disaster Type : Case of Typhoon MITAG (2019) (재난유형별 최적 위성영상 분석을 위한 위성 궤도 시뮬레이션 연구 및 적용 : 태풍 미탁(2019) 사례)

  • So-Mang, LIM;Ki-Mook, KANG;Eui-Ho, HWANG;Wan-Sik, YU
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.210-221
    • /
    • 2022
  • In order to promptly respond to disasters, the era of new spaces has opened where satellite images with various characteristics can be used. As the number of satellites in operation at home and abroad increases and the characteristics of satellite sensors vary, it is necessary to find satellite images optimized for disaster types. Disaster types were divided into typhoons, heavy rains, droughts, forest fires, etc., and the optimal satellite images were selected for each type of disaster considering satellite orbits, active/passive sensors, spatial resolution, wavelength bands, and revisit cycles. Each satellite orbit TLE (Two Line Element) information was applied to the SGP4 (Simplified General Perturbations version 4) model to develop a satellite orbit simulation algorithm. The developed algorithm simulated the satellite orbit at 10-second intervals and selected an accurate observation area by considering the angle of incidence of each sensor. The satellite orbit simulation algorithm was applied to the case of Typhoon Mitag in 2019 and compared with the actual satellite list. Through the analyzed results, the time and area of the captured image and the image to be recorded were analyzed within a few seconds to select the optimal satellite image according to the type of disaster. In the future, it is intended to serve as a basis for building a system that can promptly request and secure satellite images in the event of a disaster.

Analysis of Impact Climate Change on Extreme Rainfall Using B2 Climate Change Scenario and Extreme Indices (B2 기후변화시나리오와 극한지수를 이용한 기후변화가 극한 강우 발생에 미치는 영향분석)

  • Kim, Bo Kyung;Kim, Byung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.23-33
    • /
    • 2009
  • Climate change, abnormal weather, and unprecedented extreme weather events have appeared globally. Interest in their size, frequency, and changes in spatial distribution has been heightened. However, the events do not display regional or regular patterns or cycles. Therefore, it is difficult to carry out quantified evaluation of their frequency and tendency. For more objective evaluation of extreme weather events, this study proposed a rainfall extreme weather index (STARDEX, 2005). To compare the present and future spatio-temporal distribution of extreme weather events, each index was calculated from the past data collected from 66 observation points nationwide operated by Korea Meteorological Administration (KMA). Tendencies up to now have been analyzed. Then, using SRES B2 scenario and 2045s (2031-2050) data from YONU CGCM simulation were used to compute differences among each of future extreme weather event indices and their tendencies were spatially expressed.The results shows increased rainfall tendency in the East-West inland direction during the summer. In autumn, rainfall tendency increased in some parts of Gangwon-do and the south coast. In the meanwhile, the analysis of the duration of prolonged dry period, which can be contrasted with the occurrence of rainfall or its concentration, showed that the dryness tendency was more pronounced in autumn rather than summer. Geographically, the tendency was more remarkable in Jeju-do and areas near coastal areas.

Warm Water Circulation and its Origin by Sea Level Fluctuation and Bottom Topography (해수면변화와 해저지형에 의한 난류수의 순환과 그 기원)

  • PARK Ig-Chan;OH Im Sang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.5
    • /
    • pp.677-697
    • /
    • 1995
  • The analysis of long- period sea level variations with tidal record data around Korea, Japan, and Russia shows that about half of the variations are due to atmospheric influences. The sea level variation by water movements is the largest in the coasts along the Tsushima Current, and becomes smaller in the distant areas. It suggests that the sea level varications are related with the Tsushima Current. The effect of sea level variations to ocean circulation has been studied with a numerical model allowing barotropic sea level fluctuations, like the result with GCM (Semtner) model by Pang et al.(1993), the present model also shows that waters basically flow along isobaths over the last China Sea after geostyophic adjustment around Taiwan. However, barotropic sea level fluctuation makes the basic circulation in the Yellow Sea, which waters flow into the central Yellow Sea and out along the west coast of the Korean Peninsula. Besides this, barotropic sea level fluctuation makes long period waves over the shelf area as the Kuroshio varies. By the waves, the basic circulation in the Yellow Sea is disturbed, so that the flow pattern of oppositely flowing into the Yellow Sea along the west roast of the Korean Peninsula appears. In the Yellow Sea circulation, it seems that northwest winds strengthen the basic circulat ion In winter, and southeast winds strengthen the disturbed circulation in summer. Another point appeared by the long period wave is that the Tsushima Current possibly originates in different areas. There have been two opposing argues on the area in which the Tsushima Current originates the southwest sea of Kyushu Island and the adjacent sea of Taiwan. Through this study, we found that both of them seem to be important areas for the origin of the Tsushima Current, and one of them is possibly strengthened by long period waves. The long period waves given by the variation of the Kuroshio Current in the adjacent sea of Taiwan propagate to the Korea Strait as forced waves. The wave continuously propagates to the last Sea through the eastern channel, but reflects in the western channel due to bottom topography. The reflected waves propagate southwestward along the last China Sea as free waves and determine the sea level variations with forced waves.

  • PDF