• Title/Summary/Keyword: 관성 항법 시스템

Search Result 179, Processing Time 0.026 seconds

Noncommutativity Error Analysis with RLG-based INS (링레이저 자이로 관성항법시스템의 비교환 오차 해석)

  • Kim, Gwang-Jin;Park, Chan-Guk;Yu, Myeong-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.81-88
    • /
    • 2006
  • In this paper, we analyze a noncommutativity error that is not able to be compensated with integrating gyro outputs in RLG-based INS. The system can suffer from some motion known as RLG dithering motion, coning motion, ISA motion derived by an AV mount and vehicle real dynamic motion. So these motions are a cause of the noncommutativity error, the system error derived by each motion has to be analyzed. For the analysis, a relation between rotation vector and gyro outputs is introduced and applied to define the coordinate transformation matrix and the angular vector.

Design of Inertial Navigation System/Celestial Navigation System Navigation System for Horizontal Position Estimation and Performance Comparison Between Loosely and Tightly Coupled Approach (수평 위치정보 추정을 위한 관성/천측 항법시스템 설계 및 약결합/강결합 방식의 성능 비교)

  • Kiduck Kim
    • Journal of Space Technology and Applications
    • /
    • v.3 no.1
    • /
    • pp.58-71
    • /
    • 2023
  • This paper describes a navigation system design for horizontal position estimation using inertial measurement sensors and celestial navigation. In space, stars are widely spread objects in the celestial sphere and have been used mainly to obtain attitude information through star observation. However, it is also possible to obtain information about the horizontal position with the altitude of the star. It is called celestial navigation which is the same principle that former navigators used to locate themselves while sailing on the sea. In particular, in deep space where GPS is not available, it is important to obtain information on the location by making use of stars that are relatively easy to observe. Therefore, we introduce a navigation system that can estimate horizontal position and design two types of systems, loosely coupled and tightly coupled depending on how the measurements are utilized. It is intended to help in the future design of navigation system using celestial navigation by simulation studies that not only verify whether the system correctly estimates horizontal position but also comparing the performance of loosely and tightly coupled methods.

Psi Angle Error Model based Alignment Algorithm for Strapdown Inertial Navigation Systems (스트랩다운 관성항법시스템의 Psi각 오차 모델 기반 정렬 알고리즘)

  • Park, Sul-Gee;Hwang, Dong-Hwan;Lee, Sang-Jeong
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1763_1764
    • /
    • 2009
  • 관성항법시스템에서는 항법을 수행하기 전 항체의 자세를 구하는 정렬을 수행하여야 한다. 본 논문에서는 추정치 기반의 섭동모델인 Psi각 오차모델을 이용하여 정밀 정렬을 수행하는 알고리즘을 제시하고 모의실험을 통하여 정렬 오차가 예상 결과 범위 내로 추정됨을 확인하였다.

  • PDF

관성항법장치 기술

  • 박찬국;이장규;박흥원
    • ICROS
    • /
    • v.3 no.2
    • /
    • pp.51-57
    • /
    • 1997
  • 이 글에서는 다음의 내용을 다루었다. 1. 기본원리 및 구성 2. 자이로 3. 복합 항법장치 4. 발전추세 및 전망

  • PDF

Design and Implementation of a 3D Pointing Device using Inertial Navigation System (관성항법시스템을 이용한 3D 포인팅 디바이스의 설계 및 구현)

  • Kim, Hong-Sop;Yim, Geo-Su;Han, Man-Hyung;Lee, Keum-Suk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.5
    • /
    • pp.83-92
    • /
    • 2007
  • In this paper, we present a design and implementation of three dimensional pointing device using Inertial Navigation System(INS) that acquires coordinates and location information without environmental dependancy. The INS measures coordinates based on the data from gyroscope and accelerometer and corrects the measured data from accelerometer using Kalman-Filter. In order to implement the idea of three dimensional pointing device, we choose a three dimensional Space-recognition mouse and use RFIC wireless communication to send a measured data to receiver for printing out the coordinate on display equipment. Based on INS and Kalman-Filter theoretical knowledge, we design and implement a three dimensional pointing device and verified the usability as an input device that can capture a human's move. also, we describe the applicability of this device in ubiquitous computing environment.

  • PDF

Alignment of Inertial Navigation Sensor and Aircraft Fuselage Using an optical 3D Coordinate Measuring Device (광학식 3차원 좌표측정장치를 이용한 관성항법센서와 기체의 정렬기법)

  • Kim, Jeong-ho;Lee, Dae-woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.41-48
    • /
    • 2019
  • This paper deals with a method of aligning an aircraft fuselage and an inertial navigation sensor using three-dimensional coordinates obtained by an optical method. In order to verify the feasibility, we introduce the method to accurately align the coordinate system of the inertial navigation sensor and the aircraft reference coordinate system. It is verified through simulation that reflects the error level of the measuring device. In addition, optimization method based alignment algorithm is proposed for connection between optical sensor and inertial navigation sensor.

Velocity Aided Navigation Algorithm to Estimate Current Velocity Error (해조류 속도 오차 추정을 통한 속도보정항법 알고리즘)

  • Choi, Yun-Hyuk
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.3
    • /
    • pp.245-250
    • /
    • 2019
  • Inertial navigation system has navigation errors because of the error of inertial measurement unit (IMU) and misalignment over time. In order to solve this problem, aided navigation system is performed using global navigation satellite system (GNSS), speedometer, etc. The inertial navigation system equipped with underwater vehicle mainly uses speedometer and performed aided navigation because satellite signals do not pass through underwater. There are DVL, EM-Log, and RPM in the speedometer, and the sensors are applied according to the system environment. This paper describes velocity aided navigation using RPM of inertial navigation system operating in high speed and deep water environment. In addition, we proposes an algorithm to compensate the limit of RPM with straight direction and the current velocity error. There are results of monte-calo simulation to prove performance of the proposed algorithm.

좌표계의 회전과 코리올리 효과

  • Lee, Hyeong-Geun
    • ICROS
    • /
    • v.16 no.1
    • /
    • pp.51-55
    • /
    • 2010
  • 제어 및 로봇 응용에서 이동체의 위치, 속도, 그리고 자세 정보를 획득하는 기능은 매우 중요한 여할을 수행한다. 위치, 속도, 그리고 자세 정보는 통틀어 항법정리라 통칭되며 전파센서, 영상센서, 혹은 관성센서 등 다양한 센서들의 조합에 의하여 획득될 수 있다. 항법정보의 획득에 있어서 특히 관성센서는 다양한 센서들의 조합에 있어서 가장 중요한 역할을 수행하는데 이는 관성센서가 다른 센서들과는 달리 주변의 조명 환경, 전파환경, 그리고 고의적인 외란에 강인한 특성을 지니며, 이동체의 빠른 운동을 세밀하게 수치화하여 표현할 수 있기 때문이다. 본 고에서는 이와 같은 장점을 지닌 관성센서의 출력을 정확하게 다루기 위해 명확한 이해가 요구되는 코리올리 효과에 대하여 살펴보고자 한다. 코리홀리 효과는 이동체의 운동을 회전하는 좌표계에서 관측할 경우 발생하는 특이한 현상에 해당되며 관성센서를 다루기 위한 준비 과정에서 많은 입문자들이 어려움을 가지는 부분으로 이해된다.

INS/Multi-Vision Integrated Navigation System Based on Landmark (다수의 비전 센서와 INS를 활용한 랜드마크 기반의 통합 항법시스템)

  • Kim, Jong-Myeong;Leeghim, Henzeh
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.8
    • /
    • pp.671-677
    • /
    • 2017
  • A new INS/Vision integrated navigation system by using multi-vision sensors is addressed in this paper. When the total number of landmark measured by the vision sensor is smaller than the allowable number, there is possibility that the navigation filter can diverge. To prevent this problem, multi-vision concept is applied to expend the field of view so that reliable number of landmarks are always guaranteed. In this work, the orientation of camera installed are 0, 120, and -120degree with respect to the body frame to improve the observability. Finally, the proposed technique is verified by using numerical simulation.

Stabilization Technique for a Dual-axis Rotational Inertial Navigation System considering Waves (파도를 고려한 2축 회전형 관성항법시스템의 안정화 기법)

  • Myeong-Seok Chae;Seong-Yun Cho;Chan-Gook Park;Min-Su Jo;Chan-Joo Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.437-444
    • /
    • 2024
  • The rotational inertial navigation system can provide more accurate navigation information by mounting an IMU (Inertial Measurement Unit) on the gimbal and rotating the gimbal regularly to cancel out the errors of the IMU. However, when an attitude change occurs due to waves, the attitude error is not removed to 0 at the end of one cycle of the rotation procedure and causes a large position error. In this paper, considering this problem, we propose a method of stabilizing the external gimbal by rotating it based on the roll information of the vehicle. Based on simulation, the impact of waves is analyzed and the performance of external gimbal stabilization is verified.