• Title/Summary/Keyword: 관성측정 장치

Search Result 145, Processing Time 0.026 seconds

Dynamic Modeling based Flight Control of Hexa-Rotor Helicopter System (헥사로터형 헬리콥터의 동역학 모델기반 비행제어)

  • Han, Jae-Gyun;Jin, Taeseok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.398-404
    • /
    • 2015
  • In this paper, we describe the design and performance of a prototype multi-rotor unmaned aerial vehicle( UAV) platform featuring an inertial measurement unit(IMU) based autonomous-flying for use in bluetooth communication environments. Although there has been a fair amount of study of free-flying UAV with multi-rotors, the more recent trend has been to outfit hexarotor helicopter with gimbal to support various services. This paper introduces the hardware and software systems toward very compact and autonomous hexarotors, where they can perform search, rescue, and surveillance missions without external assistance systems like ground station computers, high-performance remote control devices or vision system. The proposed system comprises the construction of the test hexarotor platform, the implementation of an IMU, mathematical modeling and simulation in the helicopter. Furthermore, the hexarotor helicopter with implemented IMU is connected with a micro controller unit(MCU)(ARM-cortex) board. The micro-controller is able to command the rotational speed of the rotors and to get the measurements of the IMU as input signals. The control simulation and experiment on the real system are implemented in the test platform, evaluated and compared against each other.

A Calculation Method for the Tilt Angle of Missile Round using Roll Rotation (롤 회전을 이용한 장입유도탄 비정렬각 산출기법)

  • Park, Dong-Hyun
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.500-506
    • /
    • 2018
  • In this paper, we considered the one-shot alignment using master inertial navigation system (MINS) and slave inertial navigation system (SINS) in the missile to find the exact posture of a missile. In order to perform one-shot alignment, the tilt angle between MINS and SINS must be obtained, which can be compensated by obtaining the tilt angle between missile round and SINS. The tilt angle was calculated by using the roll rotation of missile round, jig for rotating the missile round and interface structure to measure the horizontal state by using a horizontal angle meter were constructed. As a result of the tilt angle save (TAS) inspection, the tilt angle ${\alpha}$, ${\beta}$, ${\gamma}$ is normal range and it is possible to perform one-shot alignment by compensating this value.

A Stability Improvement of Spacecraft by Inertial Sensor Using Gyro Principle (자이로 원리를 응용한 관성센서에 의한 비행체의 안정성 향상)

  • 정인성;이기형
    • Journal of the KSME
    • /
    • v.34 no.7
    • /
    • pp.546-557
    • /
    • 1994
  • 원격 조정식 비익체(이하 RPV : Remoteloted Vehicle)의 안정성을 향상시키고 조정을 간략화하기 위하여 사용되고있는 관성센서에 관해서 알아본다. 관성센서의 기본 원리는 뉴톤의 운동 제3 법칙인 관성의 법칙이고, 특징은 외부 측정기준을 필요로 하지 않은 점에 있으므로, 관성센서를 탐재한 RPV는 공중에서 운동 상태를 외부의 정보 없이 검토할 수 있다. 실제적으로 기계용으로 실용화되고 있는 센서는 관성항법장치(INS:Inertial Navigation System)라고 불리워지는 매우 고급자립형 장치로부터 자이로 컴파스로 불리워지는 방위 자이로와 자기 방위 센서를 조합한 방법까지 여러 가지가 있지만, 여기에서는 산업용 소형 RPV의 크기, 가격 및 입수성에서 이용이 가능하다고 생각되는 센서를 중심으로 원리, 종류 및 응용예를 설명한다.

  • PDF

관성센서 출력 측정을 위한 AF 변환기 교정기법

  • Kim, Jeong-Yong;Cho, Hyun-Chul;Roh, Woong-Rae;Choi, Hyung-Don;Cho, Gwang-Rae
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.117-125
    • /
    • 2005
  • Generally, the inertial navigation and guidance unit uses AF(Analog-to-Frequency) converters which convert analog signals into frequency signals to enhance a measurement accuracy of gyroscope and accelerometer outputs. The confidence level of AF converter is guaranteed by a prudential decision of calibration procedure and a performance of periodic calibration test. In this paper, we focus on the synchronous charge balance type AF converter which has a separate positive or negative current input and its calibration method is described. The calibration tests are classified into the scale factor error calibration and the bias calibration. These tests are automatically performed by the calibration program.

  • PDF

Analysis of Navigation Error According to Rotational Motions of Rotational Inertial Navigation for Designing Optimal Rotation Sequence (최적 회전 절차 설계를 위한 회전형 관성항법장치의 회전 동작별 항법 오차 분석)

  • Jae-Hyuck Cha;Chan-Gook Park;Seong-Yun Cho;Min-Su Jo;Chan-Ju Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.445-452
    • /
    • 2024
  • This paper analyzes the navigation error for each rotational motion in order to design an optimal rotation sequence, which is a key technology in the rotational inertial navigation. Rotational inertial navigation system is designed to cancel out navigation errors caused by inertial sensor errors by periodically rotating the inertial measurement unit. A properly sequenced rotational motion cancels out the maximum amount of navigation error and is known as an optimal rotation sequence. To design such an optimal turning procedure, this paper identifies the feasible rotational motions that can be implemented in a rotational inertial navigation system and analyzes the navigation error introduced by each rotational motion. In addition, by analyzing the characteristics of the navigation error generated during a rotation sequence in combination, this paper presents the conditions for designing an optimal rotation sequence.

A Study of High Precision Position Estimator Using GPS/INS Sensor Fusion (GPS/INS센서 융합을 이용한 고 정밀 위치 추정에 관한 연구)

  • Lee, Jeongwhan;Kim, Hansil
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.159-166
    • /
    • 2012
  • There are several ways such as GPS(Global Positioning System) and INS (Inertial Navigation System) to track the location of moving vehicle. The GPS has the advantages of having non-accumulative error even if it brings about errors. In order to obtain the position information, we need to receive at least 3 satellites information. But, the weak point is that GPS is not useful when the 혠 signal is weak or it is in the incommunicable region such as tunnel. In the case of INS, the information of the position and posture of mobile with several Hz~several hundreds Hz data speed is recorded for velocity, direction. INS shows a very precise navigational performance for a short period, but it has the disadvantage of increasing velocity components because of the accumulated error during integration over time. In this paper, sensor fusion algorithm is applied to both of INS and GPS for the position information to overcome the drawbacks. The proposed system gets an accurate position information from experiment using SVD in a non-accessible GPS terrain.

Error analysis for a strapdown inertial navigation system (스트랩다운 관성항법장치의 오차해석)

  • 심덕선;박찬국;송유섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.286-289
    • /
    • 1986
  • 항법(navigation)은 기준좌표계에 대한 항체(vehicle)의 위치나 속도를 알아내기 위한 것으로 이를 위한 시스템이 관성항법장치(inertial navigation system-INS)이며 항법기능을 수행하기 위하여 항체에 놓여진 쎈서의 관성성질을 이용한다. INS는 specific force와 관성 각속도의 측정에서 얻은 데이타를 처리함으로 그 기능을 수행한다. 스트랩다운 INS(SINS)는 관성항법장치의 한 종류로 analytic INS라고도 하는데 기준좌표축을 유지하기 위하여 안정테이블을 사용하지 않고 쎈서들을 항체에 직접 부착시켜 초기상태와 현재상태와의 사이에 상대적인 회전방향을 해석적으로 계산한다. INS의 성능은 수많은 오차원(error source)의 함수로 주어지며 이 오차원 중에는 주위환경에 의한 것도 있고 INS 구성에 사용된 기구(instruments)와 관련된 것도 있다. INS 를 해석하는 목적은 항법의 정확도를 알아보는데 있으며 또한 각각의 오차원의 값을 추정하는 것도 부가적인 목적이 된다. 이러한 오차의 추정치는 사양(specification)을 모르는 부품의 성능을 식별하는데 사용될 수 있다. 따라서 INS를 해석함으로 INS를 구성하는 어떤 부품에 대한 성능이 어느정도 개선을 필요로 하는가 알 수 있다. 본 논문에서는 SINS의 오차원을 크게 고도계의 불확실성, 중력의 편향과 이상, 가속도계의 불확실성, 자이로의 불확실성의 네 그룹으로 나누어 상호분산해석(covariance analysis)방법으로 각 오차원이 시스템에 미치는 영향을 알아보았다.

  • PDF

Measurement of Moment of Inertia of a Small Turbocharger Rotor (소형 터보과급기 로터의 관성모멘트 측정)

  • Chung, Jin-Eun;Jeon, Se-Hun;Lee, Sang-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.711-717
    • /
    • 2017
  • Measurements of the moment of inertia of a small turbocharger rotor were studied. A measuring device was manufactured using the trifilar method and the moment of inertia of the calibration rotor was measured to verify the device. The coefficient of variation was 0.43% and the error was 0.75%. The results showed that the device is suitable for measuring the moment of inertia of a turbocharger rotor. Next, the moment of inertia for two turbine rotors and compressor wheels was measured. Those for the turbine rotors showed precise and accurate results in that the coefficients were under 1.0% and the errors were under 3.0%. On the other hand, those for the compressor wheel were precise but inaccurate in that the coefficients were under 1.0% and the errors were over 24.4%. Therefore an indirect method for the compressor wheel was suggested. The results showed that the coefficients were under 1.2% and the errors were under 7.88%.

Design and Implementation of a 3D Pointing Device using Inertial Navigation System (관성항법시스템을 이용한 3D 포인팅 디바이스의 설계 및 구현)

  • Kim, Hong-Sop;Yim, Geo-Su;Han, Man-Hyung;Lee, Keum-Suk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.5
    • /
    • pp.83-92
    • /
    • 2007
  • In this paper, we present a design and implementation of three dimensional pointing device using Inertial Navigation System(INS) that acquires coordinates and location information without environmental dependancy. The INS measures coordinates based on the data from gyroscope and accelerometer and corrects the measured data from accelerometer using Kalman-Filter. In order to implement the idea of three dimensional pointing device, we choose a three dimensional Space-recognition mouse and use RFIC wireless communication to send a measured data to receiver for printing out the coordinate on display equipment. Based on INS and Kalman-Filter theoretical knowledge, we design and implement a three dimensional pointing device and verified the usability as an input device that can capture a human's move. also, we describe the applicability of this device in ubiquitous computing environment.

  • PDF