• Title/Summary/Keyword: 관성저항

Search Result 41, Processing Time 0.024 seconds

A Study on Ship Motion Measurement System Using ADIS16480 Inertial Measurement Unit (ADIS16480 관성측정장치를 이용한 선체 운동 측정 시스템에 관한 연구)

  • Kim, Daejeong;Yim, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.270-270
    • /
    • 2019
  • Although the Inertial Measurement Unit is applied to a variety of applications such as ships, submarines, and aircrafts, it is mainly used in the attitude measurement area. But since such equipment is expensive, it has been used only in special fields. In this study, the ship's seaworthiness is verified by measuring the speed, direction, gravity, and acceleration of the ship in real time using a low-cost Inertial Measurement Unit. A research method for estimating fIuid force coefficients was devised. Therefore, this study measured ship motion factors at sea, processed and analyzed the measured data, and evaluated the overall safety of the ship and estimated the resistance and steering performance of the ship.

  • PDF

Validity of Empirical Formulas for Estimation of Reflection Coefficient of Waves Due to Perforated Wall (유공벽에 의한 파의 반사율 산정에 있어서 경험공식의 타당성)

  • Yoon, Sung Bum;Lee, Jong In;Han, Sang Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.633-639
    • /
    • 2006
  • The validity of the existing formulas for the estimation of reflection coefficient of waves due to perforated wall is investigated using the result of hydraulic experiments conducted with perforated walls of various thickness. The result shows that, when the wall is thick, the energy loss coefficient is reduced to 62% of the value evaluated using the existing formula for sharp-crested orifice. The result also shows that the length of inertia resistance increases linearly as the thickness of the wall increases. The width of chamber to achieve the minimum reflection of waves decreases as the length of inertia resistance increases. Thus, the result found in the present study can be usful for the design of perforated wall.

초고진공중의 Tribo-Coating막의 윤활특성 (2)

  • 김형자;전태옥
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.617-621
    • /
    • 1993
  • 우주는 무중력, 또한 초고진공의 세계이다. 우주에서 기계가 작동할 때, 운동 저항은 마찰력과 관성력만이 작용한다. 여기서 관성력은 가속, 감속 일 때만 작용하며 그 힘은 정확하게 계산하여 얻을 수 있다. 이것에 대하여 마찰력은 접촉면에 항상 존재하며, 또한 비정상이다. 본 연구에서는 피막재로서 앞서의 보고에서 이미 유효성이 나타난 바 있는 In을 사용하여 마찰 반복수에 따른 마찰관계변화에 미치는 Pin, disc의 표면 거칠기의 변화의 영향을 명확하게 밝히고, 초고진공중에 있어서 Tribo-Coating법에 의한 In막은 윤활기구를 검토하고자 한다.

  • PDF

Wave Reflection from Partialy Perforated Caisson Breakwater (부분 유공 케이슨 방파제로부터의 파의 반사)

  • Suh, Kyung-Doug
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.3
    • /
    • pp.221-230
    • /
    • 1996
  • The Suh and Park's analytical model. originally developed to calculate wave reflection from a conventional fully perforated caisson breakwater, is applied to a partially perforated caisson breakwater by approximating the vertical wall of the lower part of the front face of the caisson as a very steep sloping wall. Also, in the model, the inertial resistance term at the perforated wall is modified by using the blockage coefficient proposed by Kakuno and Liu. The model is compared against the hydraulic experimental data reported by Park et al. in 1993. Both the experimental data and the analytical model results show that the influence of inertial resistance is important so that wave reflection becomes minimum when B/L. is approximately 0.2 (in which R : wave chamber width, and 1, : wave length inside the wave chamber), which is somewhat smaller than the theoretical value B/L, : 0.25 obtained by assuming that the influence of inertial resistance is negligible. It is also shown that the analytical model based on a linear wave theory tends to overpredict the reflection coefficient as the wave nonlinearity increases, thus the model is preferably to be used for ordinary waves of small steepness.

  • PDF

On Comparison between 2-D and 3-D Numerical Models used to Analyze the Wave Field around a Permeable Submerged Breakwater (투과성잠제 주변의 파동장 해석을 위한 2-D 및 3-D 수치계산의 비교)

  • Hur, Dong-Soo;Choi, Dong-Seok;Lee, Woo-Dong;Yeom, Gyeong-Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.4
    • /
    • pp.363-371
    • /
    • 2008
  • The aim of this study is to compare the numerical results obtained by 2-D and 3-D models which are used to examine the wave field around a permeable submerged breakwater. At first, the numerical model, which is able to consider the flow through a porous medium with inertial, laminar and turbulent resistance terms and determine the eddy viscosity with LES turbulent model, is used and validated by comparing with existing experimental data. And then, the numerical test on the wave field around a permeable submerged breakwater is performed. It is revealed from the numerical results that, at the onshore side of the submerged breakwater, the wave height by 2-D analysis is higher than that by 3-D analysis. Also, the time-averaged mean flow around a submerged breakwater is discussed in detail.

Development of Numerical Model for Scour Analysis under Wave Loads in Front of an Impermeable Submerged Breakwater (불투과 잠제 전면에서 파랑 작용 하의 세굴 해석을 위한 수치모델의 개발)

  • Hur, Dong-Soo;Jeon, Ho-Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5B
    • /
    • pp.483-489
    • /
    • 2011
  • In this study, the coupled-numerical model has been newly developed to investigate numerically scouring and deposition around a coastal structure like a submerged breakwater using a numerical wave model and a lagrangian particle model for sand transport. As a numerical wave model, LES-WASS-2D (Hur and Choi, 2008) is adopted. The model is able to consider the flow through a porous midium with inertial, laminar and turbulent resistance term and determine the eddy viscosity with LES turbulence model. Distinct element method (Cundall and Strack, 1979), which is able to apply to many dynamical analysis of particulate media, as a lagrangian particle model for sand transport is newly coupled to the numerical wave model. The numerical simulation has been carried out to examine the scour problem in front of an impermeable submerged breakwater using the newly coupled-numerical model. The numerical results has been compared qualitatively with an existing experimental data and then its applicability has been discussed.

A Study on Beach Stabilization by Laying Drainage Layer (투수층 매설에 의한 해빈안정화에 관한 연구)

  • Hur, Dong-Soo;Lee, Woo-Dong;Jeon, Ho-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3B
    • /
    • pp.325-335
    • /
    • 2010
  • The aim of this study is to survey the effects of laying drainage layer in sandy beach on beach stabilization. At first, the numerical model developed by Hur and Lee (2007), which is able to consider the flow through a porous medium with inertia, laminar and turbulent resistance terms, i.e. simulate directly WAve Structure Seabed/Sandy beach interaction and can determine the eddy viscosity with LES turbulent model in 3-D wave field (LES-WASS-3D), is validated by comparing with existing experimental data. And then, numerical simulation is carried out to examine the characteristics of wave-sandy beach interaction for a beach with/without drainage layer. From the numerical results, it is shown that mean ground-water level around a foreshore decreases and offshore-ward flow over a seabed reduces in case of a beach with drainage layer. Moreover, the effects of cross profile of drainage layer and incident wave condition on mean ground-water level around a foreshore are also discussed as well the distribution of wave setup around the foreshore.

Effect of the Slope Gradient of a Permeable Submerged Breakwater on Wave Field around It (투과성잠제의 비탈면경사가 주변 파동장에 미치는 영향)

  • Hur, Dong Soo;Choi, Dong Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2B
    • /
    • pp.249-259
    • /
    • 2008
  • The present paper studies the effect of the slope gradient of a fully permeable submerged breakwater using a newly developed numerical model that is able to consider the flow through a porous midium with inertial, laminar and turbulent resistance terms, i.e. simulate directly WAve-Structure (submerged breakwater)-Sand seabed interaction and can determine the eddy viscosity with LES turbulence model in 2-Dimensional wave field (LES-WASS-2D). The developed model was validated through the comparison with an existing experimental data, and further used for various numerical experiments in oder to investigate the complicated hydrodynamics on the varying slope gradient of permeable submerged breakwater. We found an acceptable phenomenon, as we expect intuitively, that reflection and transmission coefficients decrease simultaneously as slope gradient decrease. In addition, the breaking point, the circulation flow and mean vorticity around a submerged breakwater are throughly discussed.

Numerical Modeling of Wave Run-up and Internal Set-up on and in Permeable Coastal Structures (투과성 해안구조물의 소상파 및 내부수위변동에 관한 수치모델링)

  • 남인식;김종욱;류청로
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.34-40
    • /
    • 2002
  • A numerical model has been developed for the permeable coastal structures to simulate hydraulic characteristics on the permeable slopes, which interact with internal four field the structures. The model includes hydraulics in the porous medium. Numerical model was calibrated using hydraulic model experiments performed in 2-D wave flume in the Institute of Ocean Hydraulics in PKNU. Better aggrements were obtained with the model which employed inertia resistance term than with the conventional model, PBREAK.

A Miniature Inertia Simulator using Vector Controlled Induction Motor (벡터제어 유도전동기를 이용한 축소형 관성 시뮬레이터)

  • 김길동;박현준;한영재;한경희;조정민
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.74-80
    • /
    • 2002
  • A propulsion system apparatus for railroad vehicle is estimated it's performance because of safety and confidence. In general, flywheel type testing method is widely used in the equipment. However, mechanical inertia generated by the flywheel can not be varied (or controlled) and can not be represent actual running resistance. In this study, we have focused on the development of variable vehicle load generation. Therefore, we have proposed the method which uses variable vehicle load controlled by vector motor to get the characteristics of the real vehicle load and confirmed the results with those of computer simulations.