• Title/Summary/Keyword: 관성센서

Search Result 323, Processing Time 0.025 seconds

Terminal Homing Guidance of Tactical Missiles with Strapdown Seekers Based on an Unscented Kalman Filter (스트랩다운 탐색기를 장착한 전술유도탄의 UKF 기반 종말호밍 유도)

  • Oh, Seung-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.221-227
    • /
    • 2010
  • Recent development in seeker technology explores a new seeker design in which, with larger field-of-view (FOV), optical parts are strapped down to a body (hence, called as a body-fixed seeker or a strapdown seeker). This design has several advantages such as comparatively easier maintenance and calibration by removing complex mechanical moving parts, increasing reliability, and cost savings. On the other hand, the strapdown seeker involves difficulties in implementing guidance laws since it does not directly provide inertial LOS rates. Instead, information for generating guidance commands should be extracted by estimating missile/target relative motion utilizing target images on the image plane of a strapdown seeker. In this research, a new framework based on an unscented Kalman filter is developed for estimating missile/target relative motion on the simplified assumption of a point source target. Performance of a terminal guidance algorithm, in which guidance command is generated based on the estimated relative motion, is demonstrated by a missile/target engagement simulation.

Object Localization in Sensor Network using the Infrared Light based Sector and Inertial Measurement Unit Information (적외선기반 구역정보와 관성항법장치정보를 이용한 센서 네트워크 환경에서의 물체위치 추정)

  • Lee, Min-Young;Lee, Soo-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1167-1175
    • /
    • 2010
  • This paper presents the use of the inertial measurement unit information and the infrared sector information for getting the position of an object. Travel distance is usually calculated from the double integration of the accelerometer output with respect to time; however, the accumulated errors due to the drift are inevitable. The orientation change of the accelerometer also causes error because the gravity is added to the measured acceleration. Unless three axis orientations are completely identified, the accelerometer alone does not provide correct acceleration for estimating the travel distance. We propose a way of minimizing the error due to the change of the orientation. In order to reduce the accumulated error, the infrared sector information is fused with the inertial measurement unit information. Infrared sector information has highly deterministic characteristics, different from RFID. By putting several infrared emitters on the ceiling, the floor is divided into many different sectors and each sector is set to have a unique identification. Infrared light based sector information tells the sector the object is in, but the size of the uncertainty is too large if only the sector information is used. This paper presents an algorithm which combines both the inertial measurement unit information and the sector information so that the size of the uncertainty becomes smaller. It also introduces a framework which can be used with other types of the artificial landmarks. The characteristics of the developed infrared light based sector and the proposed algorithm are verified from the experiments.

Requirement Analysis of Navigation System for Lunar Lander According to Mission Conditions (임무조건에 따른 달 착륙선 항법시스템 요구성능 분석)

  • Park, Young Bum;Park, Chan Gook;Kwon, Jae Wook;Rew, Dong Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.734-745
    • /
    • 2017
  • The navigation system of lunar lander are composed of various navigation sensors which have a complementary characteristics such as inertial measurement unit, star tracker, altimeter, velocimeter, and camera for terrain relative navigation to achieve the precision and autonomous navigation capability. The required performance of sensors has to be determined according to the landing scenario and mission requirement. In this paper, the specifications of navigation sensors are investigated through covariance analysis. The reference error model with 77 state vector and measurement model are derived for covariance analysis. The mission requirement is categorized as precision exploration with 90m($3{\sigma}$ ) landing accuracy and area exploration with 6km($3{\sigma}$ ), and the landing scenario is divided into PDI(Powered descent initiation) and DOI(Deorbit initiation) scenario according to the beginning of autonomous navigation. The required specifications of the navigation sensors are derived by analyzing the performance according to the sensor combination and landing scenario.

Implementation of ECO Driving Assistance System based on IoT (IoT기반 ECO 운전보조 시스템 구현)

  • Song, Hyun-Hwa;Choi, Jin-ku
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.157-163
    • /
    • 2020
  • Recently, fine dust has been known to cause cardiovascular diseases here, raising interest in ways to reduce emissions by efficiently using fuel from cars that cause air pollution. Accordingly, a driving assistance system was developed to save fuel by eco-driving and improve the driver's bad driving habits. The system was developed using raspberry pi, arduino and Android. Using RPM, speed, fuel injection information obtained from OBD-II, and gyro-sensor values, Fuel-Cut is induced to create an optimal inertial driving environment. It also provides various information system such as weather, driving environment, and preventing drowsy driving through GUI and voice recognition functions. It is possible to check driving records and vehicle fault information using Android application and has low overhead for message transmission using MQTT protocol optimized for IoT environment.

Convergence of Initial Estimation Error in a Hybrid Underwater Navigation System with a Range Sonar (초음파 거리계를 갖는 수중복합항법시스템의 초기오차 수렴 특성)

  • LEE PAN MOOK;JUN BONG HUAN;KIM SEA MOON;CHOI HYUN TAEK;LEE CHONG MOO;KIM KI HUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.78-85
    • /
    • 2005
  • Initial alignment and localization are important topics in inertial navigation systems, since misalignment and initial position error wholly propagate into the navigation systems and deteriorate the performance of the systems. This paper presents the error convergence characteristics of the hybrid navigation system for underwater vehicles initial position, which is based on an inertial measurement unit (IMU) accompanying a range sensor. This paper demonstrates the improvement on the navigational performance oj the hybrid system with the range information, especially focused on the convergence of the estimation of underwater vehicles initial position error. Simulations are performed with experimental data obtained from a rotating ann test with a fish model. The convergence speed and condition of the initial error removal for random initial position errors are examined with Monte Carlo simulation. In addition, numerical simulation is conducted with an AUV model in lawn-mowing survey mode to illustrate the error convergence of the hybrid navigation System for initial position error.

Design of complex IPS system to improve positioning accuracy (측위 정확도 향상을 위한 복합 IPS 시스템 설계)

  • Lee, Hyoun-sup;Kim, Jin-deog
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1917-1922
    • /
    • 2017
  • WPS(Wifi Positioning System) conducts positioning using wireless signals scattered in real world. This process is divided into two stages: Construction Stage that collects information on wireless signals for determining location and constructs a radio map and Positioning Stage that compares the constructed information with the collected information on wireless signals. WPS lowers the accuracy of positioning if changes occur to the collected signals during positioning. PDR have recently been studied. IPS is a system designed to find out the final destination by analyzing pedestrian's no. of gait, travel range, and direction through inertial sensors. If the positioning results of WPS appear in more than two locations, it can be thought as the problem of positioning accuracy. In some cases, problems occur. In this respect, this study analyzes the situations in which the problem as mentioned above occurs and proposes a system to solve this problem through PDR.

Development of Hydrologic Data Aquisition and Management System(HDAMS) in Anyangcheon watershed (안양천 유역의 실시간 수문모니터링 자료관리시스템 개발)

  • Lee, Kyoung-Do;Kim, You-Jin;Kim, Nam-Il;Lee, Kil-Seoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.2029-2033
    • /
    • 2007
  • 오늘날 특정 유역에서의 수문현상 및 수문순환에 대한 분석을 위한 연구가 활발히 진행되고 있다. 이를 위해서는 수문자료의 관측은 반드시 수반되어야 하며, 관측자료의 품질관리 및 원시자료의 관리 등이 요구되고 있는 실정이다. 관측된 수문자료의 품질관리라 함은 자료의 신뢰도 분석과 자료의 보완의 두 과정을 포함한다. 여기서, 신뢰도 분석이라 함은 자료 속에 포함된 불확실성을 판별하는 작업을 의미하며, 자료의 불확실성은 위에서 언급된 자료의 불충분 및 불안정을 제외한 부정확, 불일관성에서 비롯된다. 자료의 보완이라 함은 자료의 신뢰도 분석을 통하여 자료 속에 포함된 불확실한 성분들을 찾아내고, 이를 제거한 후 완전한 자료로 대체하고, 자료가 결측된 경우 공백을 연결함으로써 자료의 완전성을 유지하거나 또는 불충분한 자료를 확장하는 일련의 보완작업이라고 정의한다. 자료의 품질을 결정하는 주요 인자는 크게 관측소 관리의 하드웨어적인 측면과 자료 분석의 소프트웨어적인 측면이 있다. 하드웨어적인 측면에서의 수문자료 품질관리를 위해서 본 과제에서는 현장에 설치된 수위계, 강우량계의 센서 등에 대한 장비를 점검하고, 현장실측을 통해 지속적으로 측정값을 보정해주는 역할을 수행하고 있으며, 소프트웨어적인 측면에서 수문자료의 품질관리를 위해서는 수문자료의 수집 단계부터 시작하여 데이터베이스 저장, 필터링, 통계분석, 웹 및 C/S(Client Server)를 통한 배포 등의 일련의 자료 처리 과정을 수행할 수 있는 수문자료관리 프로그램을 웹 시스템과 C/S로 분류하여 정의내릴 수 있다. 본 연구에서는 수문자료의 관리자 입장에서의 보다 효율적이고 체계적으로 자료를 관리하고 분석하기 위한 방안으로 수문자료관리시스템(Hydrologic Data Aquisition and Management System, HDAMS)을 개발하였다. 이 시스템은 안양천 유역에서 시범 적용하고 있으며, 범용성을 전제로 개발되었다. 또한 수문자료 관리 프로그램의 DB 구조 및 DB 자료를 활용한 다양한 분석기능은 갖도록 설계하였으며 계획된 데이터베이스 구조를 바탕으로 계측기 인터페이스와 사용자 인터페이스, 데이터베이스 간의 연동이 원활히 이루어지도록 개발하고자 한다.

  • PDF

Feature Extraction and Classification of Posture for Four-Joint based Human Motion Data Analysis (4개 관절 기반 인체모션 분석을 위한 특징 추출 및 자세 분류)

  • Ko, Kyeong-Ri;Pan, Sung Bum
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.117-125
    • /
    • 2015
  • In the modern age, it is important for people to maintain a good sitting posture because they spend long hours sitting. Posture correction treatment requires a great deal of time and expenses with continuous observation by a specialist. Therefore, there is a need for a system with which users can judge and correct their postures on their own. In this study, we collected users' postures and judged whether they are normal or abnormal. To obtain a user's posture, we propose a four-joint motion capture system that uses inertial sensors. The system collects the subject's postures, and features are extracted from the collected data to build a database. The data in the DB are classified into normal and abnormal postures after posture learning using the K-means clustering algorithm. An experiment was performed to classify the posture from the joints' rotation angles and positions; the normal posture judgment reached a success rate of 99.79%. This result suggests that the features of the four joints can be used to judge and help correct a user's posture through application to a spinal disease prevention system in the future.

Design and Implementation of Mobile ]Respiration Detection Diagnostic System using Ultrasound Sensing Method fficient Multicasting Environment (초음파 센싱 방식을 이용한 이동형 호흡량 측정 진단기의 설계 및 구현)

  • 김동학;김영길
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.509-515
    • /
    • 2004
  • Pulmonary function tests are widely used to diagnose and determine patients' therapy in clinic. And it was also applied in the research of the physiology and dynamics for lung disease. Among the pulmonary function tests, spirometry is the most easy and economic test. Spirometers are medical instruments that measure the instantaneous rate of volume flow of respired Bas. The mechanical spirometer was mostly used in the past. Up to the present, the most popular method of spirometer is the differential pressure technique with which change in the volume of flow are transferred to change in pressure. This kind of instrument suffers from several limitations, pressure drop, difficulty in maintenance and short period of calibration. Therefore, this study has begun to implement ultrasound spirometer, which is free of pressure loss and has wide range, focusing on the flow measurement technique and diagnostic algorithm.

Effect of Disturbance Modeling on IMMU-Based Orientation Estimation Accuracy (교란성분 모델링이 IMMU기반 자세추정 정확성에 미치는 영향)

  • Choi, Mi Jin;Lee, Jung Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.783-789
    • /
    • 2017
  • In terms of 3D orientation estimation based on nine-axis IMMU(inertial and magnetic measurement unit), there are two disturbance components decreasing estimation accuracy: one is external acceleration disturbing accelerometer's signals and the other is magnetic disturbance related to magnetometer's signals. In order to minimize effects by these two disturbances, two approaches including switching approach and model-based approach have been suggested and further research comparing these two has also been conducted. Nevertheless, effect of disturbance modeling differences on orientation estimation accuracy in model-based approach has not been studied before. This paper compares the recently reported two orientation estimation algorithms that have difference in disturbance models, in order to investigate the effect of disturbance models on accuracy of IMMU-based orientation estimation under various operating conditions. This research shows that the difference in disturbance models leads to difference in process noise covariance matrix. Consequently, this affected the orientation estimation, i.e., the estimation differences between the algorithms were root mean square errors of $1.35^{\circ}$ in average and $3.63^{\circ}$ in yaw estimation.