• Title/Summary/Keyword: 관망

Search Result 623, Processing Time 0.03 seconds

Integrated Application of Stormwater Network Analysis Model and Surfacewater Inundation Analysis Model (우수관망 해석모형과 지표수 침수해석 모형의 연계 적용)

  • Shin, Eun Taek;Lee, Sangeun;Eum, Tae Soo;Song, Chang Geun
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.78-83
    • /
    • 2018
  • Recently, due to the rapid industrialization and urbanization, a great number of infrastructure and population were concentrated in urban areas. These changes have resulted in unprecedent runoff characteristics in urban basins, and the increase in impermeable areas leads to the growth of the runoff and the peak flow rate. Although many cities have made a lot of efforts to check and expand the stormwater network, the flash flood or the local torrential rain caused a growing number of casualty and property damage. This study analyzed the stormwater passage rate in a target area using SWMM. By incorporating the flow quantity surpassing the storm sewer capacity, a 2D inland flooding analysis model was applied to route the inundated area and velocity.

Application of Transient and Frequency Analysis for Detecting Leakage of a Simple Pipeline (누수탐지를 위한 천이류와 주착수분석 적용 연구)

  • Kim, Hyung-Geun;Kim, Hyun-Soo;Lee, Mi-Hyun;Kim, Sang-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1065-1071
    • /
    • 2005
  • Many techniques of leak detection in pipeline systems have developed based on the propagation wave speeds and wave attenuation. In this paper, the transient analysis methodology is used for calculating the wave speed in the plastic pipe and a frequency analysis methodology is developed for leakage detection in water pipe networks. Data acquisition system for pressurized pipeline system were designed md fabricated to obtain high frequency pressure data. The methodology properly handles the unavoidable uncertainties in measurement and modeling error. Based on information from head pressure test data, it provides leak prediction capability from the transient events with leakage.

Feasibility Study on the Conjunctive Operation of Water Transmission Systems from Multiple Source with Applying EPAnet (수리해석(水理解析) 모형(模型)을 이용한 다수원(多水源) 송수계통(送水系統)의 연계(連繫) 운영(運營) 방안(方案) 경제성(經濟性) 평가(評價) - 거제시(市)를 대상(對象)으로 -)

  • Ryu, Tae-Sang;Ha, Sung-Ryong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.609-619
    • /
    • 2007
  • The objective of this paper is to evaluate the feasibility of conjunctive Operation between Multi-regional water supply networks from multiple source as a effective way to meet two conditions: to minimize the electric cost for providing water demanded and meet the water flow rate for satisfying customers. EPAnet Model is used to calculate a hydraulic water distribution condition based on an integrated operation of water supply systems located in short distance. The modeling was conducted on several simulation cases including the individual operation by existing inter-regional water supply networks within short distance, the conjunctive operation of more than two existing networks with valve fully closed and full open constraint. As a study distribution system, water supplying systems of the Geojae-city in the Geongsang Namdo Province was selected and investigated. It was found that a well-allocated water supply scheme based on a conjunctive operation promises to save the electric cost and satisfy all operational goals such as stability and revenues during the period. The result such as unit district costs, pareto optimum pump combination sets will be applied to the optimization for a conjunctive operation of existing inter-regional water supply networks within short distance.

Development of an Optimal Sewer Layout Model to Reduce Peak Outflows in Sewer Networks (우수관망의 첨두유출량 감소를 위한 최적설계모형의 개발)

  • Lee, Jung-Ho;Park, Cheong-Hoon;Chang, Dong-Eil;Jun, Hwan-Don;Kim, Joong-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.485-489
    • /
    • 2008
  • To achieve the optimal sewer layout design, most developed models are designed to determine pipe diameter, slope and overall layout in order to minimize the least cost for the design rainfall. However, these models are not capable of considering the superposition effect of runoff hydrographs entering each junction. The suggested Optimal Sewer Layout Model (OSLM) is designed to control flows and distribute the node inflows while taking into consideration the superposition effect for reducing the inundation risk from the sewer pipes. The suggested model used the genetic algorithm to determine the optimal layout, which was connected to the SWMM (Storm Water Management Model) for the calculation of the hydraulic analysis. The suggested model was applied to an urban watershed of 35 ha, which is located in Seoul, Korea. By using the suggested model, several rainfall events, including the design rainfall and excessive rainfalls, were used to generate runoff hydrographs from a modified sewer layout. By the results, the peak outflows at the outlet were decreased and the overflows were also reduced.

  • PDF

The Monitoring of Corrosive Water Quality in Water Distribution System by Corrosion Characteristics of Raw and Tap water (원·정수의 부식특성에 따른 상수관망에서의 부식성 수질 모니터링)

  • Bae, Seog-Moon;Kim, Do-Hwan;Son, Hee-Jong;Choi, Dong-Hoon;Kim, Ik-Sung;Kim, Kyung-A
    • Journal of Environmental Science International
    • /
    • v.24 no.7
    • /
    • pp.907-915
    • /
    • 2015
  • The tap water is generally known to be corrosive in the pH range at 6.5 ~ 7.5. And the degree of corrosion varies depending on the types of raw water such as river surface water or lake water of the dam. Although several corrosion index represents the corrosivity of tap water, the typical corrosion indexes such as Langelier saturation index (LI) and calcium carbonate precipitation potential (CCPP) were calculated to monitoring the corrosive water quality about raw and tap water in water distribution system. To control the corrosive water quality, the correlation between corrosion index and water quality factors were examined. In this study, corrosion index (LI, CCPP) and the pH was found to be most highly correlated.

Earthquake Damage Assessment of Lifelines and Utilities (라이프라인과 공공설비의 지진피해 평가)

  • 전상수
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.3
    • /
    • pp.9-17
    • /
    • 2001
  • This paper focuses on the earthquake hazard delineation and physical loss estimation for lifelines and utilities. Emphasis is given to geographic information systems(GIS) and their application to pipeline networks in evaluating the spatial characteristics of earthquake effects. The paper examines the GIS databases for water supply performance obtained for the 1994 northridge. Relationships among buried lifeline damage and various seismic parameters are examined, and the parameters that are statistically most significant are identified. Using GIS data from the Northridge earthquake, the relationships among pipeline repair rate, type of pipe, diameter, and various seismic parameters are assessed.

  • PDF

Simulation for Chlorine Residuals and Effect of Rechlorination in Drinking Water Distribution Systems of Suwon City (수원시 상수관망에서 잔류염소와 재염소주입의 효과 예측)

  • Kim, Kyung-Rok;Lee, Byong-Hi;Yoo, Ho Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.1
    • /
    • pp.108-116
    • /
    • 2000
  • Chlorine is widely used as a disinfectant in drinking-water systems throughout the world. Chlorine residual was used as an indicator for prediction of water quality in water distribution systems. The variation of chlorine residual in drinking water distribution systems of Suwon city was simulated using EPANET. EPANET is a computerized simulation model which predicts the dynamic hydraulic and water quality behavior within a water distribution system operating over an extended time period. Sampling and analysis were performed to calibrated the computer model in 1999 (Aug. Summer). Water quality variables used in simulations are temperature, roughness coefficient, pipe diameter, pipe length, water demand, velocity and so on. Extended water residence time affected water quality due to the extended reaction time in some areas. All area showed the higher concentration of chlorine residual than 0.2mg/l(standard). So it can be concluded that any area in Suwon city is not in biological regrowth problem. Rechlorination turned out to be an useful method for uniform concentration of free chlorine residual in distribution system. The cost of disinfectant could be saved remarkably by cutting down the initial chlorine concentration to the level which guarantees minimum concentration (0.2mg/l) throughout the distribution system.

  • PDF

Application of Rechlorination for Adequate Disinfection Ability in Water Distribution System (관로 내 적정소독능 확보를 위한 재염소 기법의 적용)

  • Lee, Doo-Jin;Kim, Young-Il;Lee, Jong-Min;Jung, Nam-Jung;Kim, Yong-Woon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.5
    • /
    • pp.701-707
    • /
    • 2006
  • Disinfectant residual should be maintained to achieve biological stability during distribution of treated water. The wide distribution of retention times associated with storage and transport of water in a network and the reactivity of disinfectants make it difficult to maintain adequate residuals at critical locations. Rechlorination at some intermediate locations may reduce the total disinfectant dose while keeping residuals within specified limits throughout the water distribution system. In order to select the adequate location of rechlorination for achieving to maintain of residual chlorine throughout the distribution system, EPANET was used in this study. EPANET was well predicted chlorine transport and residual loss in the distribution system. Location of rechlorination was selected to maintain 0.4mg/L of residual chlorine throughout a water distribution system by field investigation and model simulation. The quantity of chlorine may reduced 36.7% and provided smooth residual between 0.42 and 0.60mg/L, when rechlorination would be used continuously at strategic location within the distribution system.

Leakage Reduction through Establishment of Block System in Jeju City (제주시 상수도 관망 블록시스템 구축을 통한 누수 저감)

  • Cha, Joonho;Kim, Jinkeun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.693-703
    • /
    • 2012
  • Leakage in water supply system can cause water resources loss in addition to the water quality degradation. In this research, leakage reduction after establishment of a block system in the area with leakage rate of 69.0 % was investigated using EPANET simulation. The average water pressure for the research area was $5.17kgf/cm^2$ which was relatively high, and several sites were deviated from recommended water pressure ranges(i.e., 1.5 ~ $7.1kgf/cm^2$). However, the average water pressure in the area was reduced to 3.81 and $3.49kgf/cm^2$ after the introduction of block system with a water pressure relief valve(PRV) setting of 3.0 and $2.5kgf/cm^2$, respectively. Under the installation of a PRV with regulating pressure of $2.5kgf/cm^2$, the predicted leakage was reduced from $4,420.3m^3/d$ to $3,028.1m^3/d$, which was equivalent to the leakage reduction from 31.0 % to 23.5 %.

Characteristics and control of intermittent flow in water distribution systems due to restricted supply (상수도관망에서 제한급수에 따른 간헐적 흐름의 특성 및 제어)

  • Yang, Kangseung;Kim, Donghong;Jung, Kwansoo;Kim, Juhwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • The water distribution system should be invariably operated on continuous pattern for 24 hours a day. Occasionally, it is not practically possible to operate for 24 hours due to water shortage or financial constraints. Therefore an intermittent water supply is unavoidable in water shortage area and developing countries. But the intermittent water supply can introduce large pressure forces and rapid fluid accelerations into a water supply network. These disturbances may result in new pipe failure, leakage and secondary contamination. This paper proposed an improvement methodology to prevent the disturbances by intermittent water supply. For the study, the hydraulic variation of intermittent flow in water distribution system was measured and analyzed in the field by comparing with simulation of hydraulic model. Installations of control valves such as, pressure reducing and sustaining and air valves were employed for pressure and flow control. The effectiveness of the methods are presented by comparing hydraulic conditions before and after introducing the proposed solutions.