• Title/Summary/Keyword: 관리용 공시체

Search Result 13, Processing Time 0.01 seconds

Studies on the evaluation method of structural concrete strength using joint separation test body (접합분리 시험체를 사용한 구조체 콘크리트 강도 평가에 관한 실험적 연구)

  • Kim, Seong-Deok;Lee, Seon-Ho;Kim, Kwang-Ki;Jung, Kwang-Sik;Lim, Nam-Ki;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.993-996
    • /
    • 2008
  • It has been reported that destruction test by core collection is the most reliable of the structural concrete strength in present building construction field. But it causes low efficiency by damage and cutting in structure due to the core collection. It also has some problems in repairing. Additionally in case of strength test with management specimen, different environment compared to the structure environment cause problems about estimation precise structure strength. Therefore, it is required to develop structure direct strength test that has test values and credibility above the ones obtained by core specimen collection strength test and seasonal specimen test to suggest a reasonable and practical management method of structural concrete.

  • PDF

A Study on the Strength Properties of High-Strength concrete under Various curing conditions (각종 양생방법에 따른 고강도 콘크리트의 강도발현 특성에 관한 연구)

  • Cho, Hyun-Dae;Jaung, Jae-Dong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.965-968
    • /
    • 2008
  • The KS F 2403 method used on domestic sites for checking the compressive strength of a structure, sets the compressive strength of the concrete used in structural specimens as the compressive strength of testing specimens. Under this regulation, the curing method used for testing the specimens must be the standard ponding curing method (20$\pm$2$^{\circ}$C). However, because in-placed concrete is exposed to open air and cured under the seasonal temperature changes, the compressive strength of a real structure is different from the tested compressive strength. (Therefore,) This thesis first identifies the distinct characteristics of the strength development by applying the curing method listed under the KS and used for testing specimens on compressive strength tests; the atmospheric curing method, the sealed curing method, and the structural specimen core strength testing methods used for the in-sites quality checks including reckoning of the compressive strength of the structural specimens and form-demolding period; and the curing method suggested in this research, which sets the internal conditions of the structural specimens as the conditions of the applied curing method. Then, the thesis suggests the specimen curing method that most closely reenacts the compressive strength of the concrete used on the structural specimens

  • PDF

Deterioration Properties of Shotcrete as Tunnel Supporter was Exposed to Harmful Ions (터널 지보용 숏크리트의 유해이온에 대한 열화특성)

  • Jung, Ho-Seop;Kim, Dong-Gyou
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.55-64
    • /
    • 2008
  • Shotcrete have become a deterioration which was exposed to harmful environments. In this study, in order to evaluate the deterioration properties of shotcrete, visual examination, compressive strength, adhesive strength, microstructural analysis were investigated up to the 60th weeks of exposure. The attack solutions for test are sodium sulfate and hydrochloric acid solution with different concentrations, respectively. From the results, although the compressive strength of shotcrete specimens and the adhesive strength between specimens and rocks were high at the early immersion age, they rapidly dropped in the subsequent phases, especially in 5% sodium sulfate and pH1 hydrochloric acid solution. With continued exposure, various harmful ions penetrated into the shotcrete specimen, reacted with the cement hydrate, and generated expansion substances. It was verified that the shotcrete specimens suffered a serious deterioration by chemical attack.

A Study on the Strength Properties and the Temperature Curve of Winter Concrete According to the Difference of Curing Method in Mock-up Test (실물부재시험에서의 양생방법 차이에 따른 한중콘크리트외 온도이력 및 강도특성에 관한 연구)

  • Kim, Young-Jin;Lee, Sang-Soo;Won, Cheol;Park, Sang-Joon
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.541-548
    • /
    • 2003
  • This study is to investigate the temperature curve and development of compressive strength due to the curing conditions and to evaluate the optimum curing condition of test specimens showing the same development of strength to that of real structures in cold weather. The results of temperature curve with curing conditions in mock-up tests showed the trend of decrease plain concrete with insulation form, plain concrete with heating, concrete with accelerator for freeze protection, and control concrete in turn. The strength development of plain concrete of inside and outside of shelter showed the very slow strength gains due to early freezing, but that of concrete with accelerator for freeze protection showed the gradual increase of strength with time. From this, it is clear that accelerator for freeze protection has the effects of reducing the freezing temperature and accelerating the hardening under low temperature. Strength test results of small specimens embedded in members and located in insulation boxes at the site are similar to that of cores drilled from the members at the same ages, thus it is clear that these curing methods are effective for evaluation in-place concrete strength.

The experimental investigation for the curing condition deduce of the Polymer concrete manhole (폴리머 콘크리트 맨홀의 양생 조건 도출을 위한 실험적 고찰)

  • Kim, Dong-Hun;Han, Jin-Woo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.545-548
    • /
    • 2008
  • 불포화 폴리에스테르 수지를 결합재로 사용하여 제작되는 폴리머 콘크리트 맨홀은 조기 고강도 발현, 접착성. 수밀성, 내동결융해성, 내약품성, 내마모성, 전기절연성이 우수하여 프리캐스트로 제작되는 많은 통신용 맨홀에 적용되고 있다. 폴리머 콘크리트의 결합재로 사용되는 불포화 폴리에스테르 수지는 열경화성수지로써, 자체 발열에 의해 거푸집을 탈형할 정도의 초기 경화 반응이 나타나지만, 구조물로서 요구되는 소요 강도를 발휘하기 위해서는 적정 온도에 의한 추가 양생이 반드시 필요하다. 이에 본 논문에서는 폴리머 콘크리트의 휨 강도 시험용 공시체를 사용하여, 다양한 양생 온도 조건 및 양생기간에 따른 휨 강도를 측정하였으며, 이를 가열 촉진 양생에 의한 휨 강도와 비교하여 콘크리트가 소요 강도를 발휘하는데 요구되는 적정 온도와 기간을 도출하였다. 이를 통해 폴리머 큰크리트 맨홀의 품질 확보를 위한 생산 관리와 제품 검사를 체계적이고 효율적으로 수행할 수 있도록 하였다.

  • PDF

Estimating Concrete Compressive Strength Using Shear Wave Velocity (전단파 속도를 이용한 콘크리트의 압축강도 추정연구)

  • An, Ji-Hwan;Nam, Jeong-Hee;Kwon, Soo-Ahn;Joh, Sung-Ho
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.171-178
    • /
    • 2008
  • Compressive strength of concrete has been regarded as a very important parameter of the quality control both in new and existing concrete pavement. It has been used a lot as the concrete strength evaluation both in the various-mixture-using laboratory and construction field using the same mixture. An error usually occurs in the test experiments of the strength, even in the test experiments with evenly mixed and compacted specimens of the compressive strength. It is caused by the 'manually operated' compressing testing, or by the specimens preparation with eccentricity. When compressive strength of evenly mixed concrete is investigated by the curing ages at the construction field, there have to be lots of specimens. And it needs much labor and cost. To substitute the endlessly repeated test experiments of compressive strength, presumption of compressive strength, by nondestructive tests, is needed. In this study, elastic waves were used among various nondestructive tests. Compressive strength of concrete was presumed according to the curing ages, by using the shear wave velocity which is not affected by restricted conditions. In the result, shear wave velocity is very closely related to the compressive strength at the evenly mixed concrete.

  • PDF

Determination of Optimal Mixture Proportion of Segregation Reducing Type Superplasticizer for High Fluidity Concrete (고유동 콘크리트용 분리저감형 유동화제의 최적배합비 결정)

  • 한천구;김성수;손성운
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.275-282
    • /
    • 2002
  • High fluidity concrete needs high dosage of superplasticizer to acquire sufficient fluidity and high contents of fine powder and viscosity agents to prevent segregation. But it requires high manufacturing cost and has difficult in quality control. Therefore, in this paper, determination of optimal mixture proportion of segregation type superplasticizer for high fluidity concrete and manufacturing high fluidity concrete by applying developed segregation reducing type superplasticizer are discussed using flowing concrete method. According to test results, as dosage of superplasticizer increases, it shows that fluidity and bleeding increase, while air contents and ratio of segregation resistance decrease. It also shows that adding viscosity agent into it reduce bleeding and improve segregation resistance. Dosage of AE agent into it containing viscosity agent recovers loss of air contents during flowing procedure. Combination of proper contents of superplasticizer, viscosity agent and AE agent make possible to develope segregation reducing type superplasticizer Compressive strength of high fluidity concrete applying flowing method with it is higher than that of base concrete. No differences of compressive strength between compacting methods are found.

An Experimental Study on Concrete Filled Steel Tube Column of Mock-up test take advantage of the High Strength Concerete(over the 80MPa) (초고강도 콘크리트(800kgf/$\textrm{cm}^2$ 이상)를 이용한 콘크리트충전 강관기둥에 대한 실물대 실험)

  • 이장환;공민호;전판근;정근호;이영도;정상진
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.21-25
    • /
    • 2004
  • The column for Steel Framed Reinforced Concrete Structure (SFRCS) and the column for Reinforced Concrete Structure (RCS) could be the most common building structure. The increasing of the need for massive space hasaffected the size of building components for supporting the massive structure. However, the changing of components size makes inefficient space of building. Hence, to meet the need for acquiring efficient space comparing the budget and cost the new structure method, Concrete Filled Tube Steel (CFT), was developed. CFT is the structure for which steel tube instead of other materials such as wood for holding concrete is used. The most benefit of this one is to help in reducing the size of the building components and local buckling because of tube steel holding concrete. For this reason, this research will examine the probability of applying CFT on construction sites by using the concrete (800kgf/$\textrm{cm}^2$) especially for CFT through the data from the real size mock-up.

  • PDF

Evaluation of Adhesive Performance of Surface Finishing Material with Primer Based on Silane (실란계 프라이머를 활용한 바닥 마감재 부착성능 평가)

  • Jeong, Gwon-Young;Youn, Da Ae;Jang, Seok-Joon;Kil, Bae-Su;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.39-46
    • /
    • 2017
  • The experimental research was conducted to evaluate the adhesive performance of surface finishing material with primer based on silane(primer). For this purpose, concrete specimens with compressive strength of 18, 30, 50 MPa were made and cured in water condition ($20{\pm}2^{\circ}C$) for 28 days. A primer was applied on the age of 28 days and evaluated according to based on the curing age of the surface finishing material. Moreover, the mortar specimen also made and tested as per KS F 4937 for compared with concrete-based test results. Test results indicated that the adhesive strength of specimens with primer exhibit similar than that of specimens without primer. Also, the adhesive performance improved with increasing in curing age and compressive strength. The correlation between compressive and adhesive strength of mortar and concrete specimens showed similar trend. It was noted that there is no significant effects of primer on adhesive performance of surface finishing material, thus use of primer has superior potential for solving durability problem of concrete slab surface.

Experimental Evaluation of the Effect of the Mixing Design Factors of the Cementitious Composite for 3D Printer on the Printing Quality (3D 프린터용 시멘트 복합체의 배합요인에 따른 출력 품질의 실험적 평가)

  • Seo, Ji-Seok;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.89-96
    • /
    • 2022
  • In this paper, to evaluate the output quality of the cementitious composite mixture for printing with the ME method for construction 3D printer, visual inspection of the output appearance and the dimensional error rate, compressive strength and flexural strength of the output were measured. As a result of the test, the mixing design with excellent output appearance was P1-2, P1-4, P2-5, P2-6, and the mixing design with good output appearance was P0-1, P1-1, P1-3, P1-6, P1-7 and P2-4. Of these mixing designs, P0-1 and P2-6 had the lowest dimensional error rates As a result of evaluating the compressive strength and flexural strength of the various mixing designs, the Mixing design with excellent output designs showed good mechnical properties. However, mixing designs with excellent mechanical properties does not necessarily have excellent output quality. Therefore, in order to accurately evaluate the output quality, it is judged that visual inspection and dimensional error rate inspection should be performed first, and then the mechanical characteristics should be reviewed.