• Title/Summary/Keyword: 관류팬텀

Search Result 8, Processing Time 0.01 seconds

Development of a New Cardiac and Torso Phantom for Verifying the Accuracy of Myocardial Perfusion SPECT (심근관류 SPECT 검사의 정확도 검증을 위한 새로운 심장.흉부 팬텀의 개발)

  • Yamamoto, Tomoaki;Kim, Jung-Min;Lee, Ki-Sung;Takayama, Teruhiko;Kitahara, Tadashi
    • Journal of radiological science and technology
    • /
    • v.31 no.4
    • /
    • pp.389-399
    • /
    • 2008
  • Corrections of attenuation, scatter and resolution are important in order to improve the accuracy of single photon emission computed tomography (SPECT) image reconstruction. Especially, the heart movement by respiration and beating cause the errors in the corrections. Myocardial phantom is used to verify the correction methods, but there are many different parts in the current phantoms in actual human body. Therefore the results using a phantom are often considered apart from the clinical data. We developed a new phantom that implements the human body structure around the thorax more faithfully. The new phantom has the small mediastinum which can simulate the structure in which the lung adjoins anterior, lateral and apex of myocardium. The container was made of acrylic and water-equivalent material was used for mediastinum. In addition, solidified polyurethane foam in epoxy resin was used for lung. Five different sizes of myocardium were developed for the quantitative gated SPECT (QGS). The septa of all different cardiac phantoms were designed so that they can be located at the same position. The proposed phantom was attached with liver and gallbladder, the adjustment was respectively possible for the height of them. The volumes of five cardiac ventricles were 150.0, 137.3, 83.1, 42.7 and 38.6ml respectively. The SPECT were performed for the new phantom, and the differences between the images were examined after the correction methods were applied. The three-dimensional tomography of myocardium was well reconstructed, and the subjective evaluations were done to show the difference among the various corrections. We developed the new cardiac and torso phantom, and the difference of various corrections was shown on SPECT images and QGS results.

  • PDF

A Study on the Radiation Exposure Dose of Brain Perfusion CT Examination a Phantom (Phantom을 이용한 뇌 관류 CT검사에서 방사선 피폭선량에 관한 연구)

  • Jung, Hong-Rynag;Kim, Ki-Jeong;Mo, Eun-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.5
    • /
    • pp.287-294
    • /
    • 2015
  • The purpose of this study, was Let's examine the exposure dose at the time of cerebral blood flow CT scan of acute ischemic stroke patients. In particular, long-term high doses of radiation sensitive organs and we Measured using phantom and a glass dosimeter. Apply the existing protocol suggested by the manufacturer (fixed time delay technique) and the proposed new convergence protocol (bolus tracking technique), reporting to measure the dose, dose reduction was to prepare the way. Results up to 39.8% as compared to the existing protocols in a new suggested convergence protocol, a minimum of 5.8% was long-term dose is reduced. Test dose of $CDTI_{vol}$ and DLP values decreased 25%, respectively, were measured at less than recommended dose. Try checking the protocol set out in the existing based on the analysis result of the above, by applying the proposed new convergence protocol by reducing the dose would have to contribute to improved public health. It is believed to be research continues to find the optimum protocol in the other tests.

Quantitative Analysis of Fluid Velocity and Signal Loss of the TOF-MRA in a 3.0T MR System: Using the Flow Rate Control Phantom (3.0T MR system에서 TOF-MRA의 유체속도와 신호소실의 정량분석 : 유속조절팬텀 이용)

  • Back, Sang-Hoon;Jeong, Jin-Heon;Lee, Ye-Eun;Gwak, Min-Young;Yoon, Jun;Jung, Dabin;Oh, Hyun-Sik;Heo, Yeong-Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.965-973
    • /
    • 2020
  • The purpose of this study was to quantitatively correlate the change of flow velocity and signal voiding in TOF-MRA. We made our phantom to control the flow velocity, and changed the flow velocity in 16 steps from 8.0 to 127.3 mc/s. The TOF-MRA test was performed using a 3.0T MRI system and the signal intensity was measured by classifying the signal voiding length and image into the In flow, Mid flow, and Out flow. The length of signal voiding was the longest when the flow velocity was 127.3 cm/s and the signal intensity decreased with increasing flow velocity(p<0.05). In flow(-.547) and Mid flow(-.643) were negatively correlated with flow velocitys(p<0.05). In conclusion, it was confirmed that the increase in flow velocity was a major factor causing signal voiding in TOF-MRA. In the future, this study will provide basic data when studying sequences and parameters to reduce signal voiding in models with a high flow velocity.

Fundamental Study of Relative Measurement for Accurate Measurement of Stent Size in Computed Tomography Angiography (컴퓨터단층 혈관조영술에서 스텐트 사이즈의 정확한 측정을 위한 상대적 측정법의 기초연구)

  • Lee, Seung-Young;Hong, Joo-Wan;Kang, Su-Mi;Kim, Su-Bin;Joon, Sang-Hoon;Heo, Yeong-Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.713-720
    • /
    • 2019
  • The purpose of this study was to propose a new measurement method for accurate measurement of vessel diameter in computed tomography angiography(CTA). CTA test was performed after non-ionic iodine contrast agent was flowed at a constant rate to self-maded perfusion phantom. After obtaining raw data, images were reconstructed with multi-planar reconstruction(MPR) and maximal intensity projection(MIP). Diameters of vascular models were measured for each technique. Relative and conventional measurements were then compared. The mean diameter of the vascular model was closer to the actual measurement when relative measurement was used compared to that when conventional measurement was used both in MPR and MIP. Relative measurements of MPR and MIP were closer to actual measurement than those of conventional measurement (34% VS, 24%, p<0.05). The relative measurement method proposed in this study was closer to the actual measurement than the conventional measurement method. However, both test methods were still larger than actual results. Therefore, further study of relative measurement method is needed using this study as basic data.

Phantom Image Evaluations Depending on the Quality Control-Uniformity of Brain Perfusion SPECT Scanner (뇌 관류 SPECT 스캐너의 정도관리-균일도에 따른 팬텀 영상 평가)

  • Jung-Soo, Kim;Hyun-Jin, Yang;Joon, Kim;Chan-Rok, Park
    • Journal of radiological science and technology
    • /
    • v.46 no.1
    • /
    • pp.29-36
    • /
    • 2023
  • To have highly reliable diagnostic performance of it, this study comparatively analyzed spatial resolution of SPECT images and interrelationship depending on the changes of system uniformity of ga㎜a camera through phantom analysis. This study chose 6 kinds of results from quality control (uniformity) of triple head SPECT scanner operated in an university hospital in Seoul for six months. Then, study measured spatial resolutions (FWHM) of the images restructured by injecting radiopharmaceuticals to Jaszczak phantom, and doing SPECT scanning under the same conditions as clinical ones using the analytical program (image J). Quality controls performed by the experimental institution showed that differential uniformity of UFOV ranged from 2.76% to 7.61% (4.46±2.07), and integral uniformity of UFOV ranged from 1.98% to 5.42% (3.01±1.43). Meanwhile, Quantitative analysis evaluations of phantom images depending on the changes of uniformity of SPECT scanner detector showed that as the uniformity values of UFOV and CFOV decreased, FWHM values of phantom images decreased from 8.5 ㎜ to 5.8 ㎜. That is, it was quantitatively identified that the higher uniformity of detector is, the better spatial resolution of images gets (P<0.05). It is very important to perform continuous and consistent quality control of the nuclear medicinal system, and users should be clearly conscious of it.

The Comparison of Motion Correction Methods in Myocardial Perfusion SPECT (심근관류 SPECT에서 움직임 보정 방법들의 비교)

  • Park, Jang-Won;Nam, Ki-Pyo;Lee, Hoon-Dong;Kim, Sung-Hwan
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.28-32
    • /
    • 2014
  • Purpose Patient motion during myocardial perfusion SPECT can produce images that show visual artifacts and perfusion defects. This artifacts and defects remain a significant source of unsatisfactory myocardial perfusion SPECT. Motion correction has been developed as a way to correct and detect the patient motion for reducing artifacts and defects, and each motion correction uses different algorithm. We corrected simulated motion patterns with several motion correction methods and compared those images. Materials and Methods Phantom study was performed. The anthropomorphic torso phantom was made with equal counts from patient's body and simulated defect was added in myocardium phantom for to observe the change in defect. Vertical motion was intentionally generated by moving phantom downward in a returning pattern and in a non-returning pattern throughout the acquisition. In addition, Lateral motion was generated by moving phantom upward in a returning pattern and in a non-returning pattern. The simulated motion patterns were detected and corrected similarly to no-motion pattern image and QPS score, after Motion Detection and Correction Method (MDC), stasis, Hopkins method were applied. Results In phantom study, Changes of perfusion defect were shown in the anterior wall by the simulated phantom motions, and inferior wall's defect was found in some situations. The changes derived from motion were corrected by motion correction methods, but Hopkins and Stasis method showed visual artifact, and this visual artifact did not affect to perfusion score. Conclusion It was confirmed that motion correction method is possible to reduce the motion artifact and artifactual perfusion defect, through the apply on the phantom tests. Motion Detection and Correction Method (MDC) performed better than other method with polar map image and perfusion score result.

  • PDF

Comparison with 1.5Tesla and 3.0Tesla of Acoustic Noise Spectrum of DWI MR Pulse Sequence (1.5Tesla and 3.0Tesla에서 관류 MR의 소리 스펙트럼 분석)

  • Kweon, Dae Cheol;Choi, Jiwon
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.4
    • /
    • pp.491-496
    • /
    • 2018
  • The purpose of this study is to analyze the noise spectra in DWI (diffusion-weighted imaging) pulse sequences of 1.5 Tesla and 3.0 Tesla MRI, The ACR (American College of Radiology) phantom and noise spectrum were analyzed by FFT (fast Fourier transform) and TFFT (temporal frequency analysis) using WavePad sound editor version 8.13 (NCH software, Greenwood Village, CO, USA). Noise spectra, FFT and TFFT were analyzed for laboratory 1.5Tesla and 3.0Tesla DWI MR pulse sequences. The noise threshold of the frequency amplitude in the FFT and TFFT at 3.0Tesla compared to 1.5Tesla was between 1.5Tesla and -6 dB, and between 3.0Tesla and 0 dB, the DWI pulse sequence for the patient's noise reduction was appropriately MR examination needs to be applied.

Comparison of Lens Dose in accordance with Bismuth shielding and Patient position in Brain perfusion CT (Brain Perfusion CT에서 Bismuth 차폐와 환자의 자세 변화에 따른 수정체 선량 비교 연구)

  • Gang, Eun Bo
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.1
    • /
    • pp.47-52
    • /
    • 2018
  • Brain perfusion CT scanning is often employed usefully in clinical conditions as it accurately and promptly provides information about the perfusion state of patients having acute ischemic stroke with a lot of time constraints and allows them to receive proper treatment. Despite those strengths of it, it also has a serious weakness that Lens may be exposed to a lot of dose of radiation in it. In this study, as a way to reduce the dose of radiation to Lens in brain perfusion CT scanning, this researcher conducted an experiment with Bismuth shielding and change of patients' position. TLD (TLD-100) was placed on both lens using the phantom (PBU-50), and then, in total 4 positions, parallel to IOML, parallel to IOML (Bismuth shielding), parallel to SOML, and parallel to SOML (Bismuth shielding), brain perfusion scanning was done 5 times for each position, and dose to Lens were measured. Also, to examine how the picture quality changed in different positions, 4 areas of interest were designated in 4 spots, and then, CT number and noise changes were measured and compared. According to the results of conducting one-way ANOVA on the doses measured, as the significance probability was found to be 0.000, so there was difference found in the doses of radiation to crystalline lenses. According to the results of Duncan's post-hoc test, with the scanning of being parallel to IOML as the reference, the reduction of 89.16% and 89.66% was observed in the scanning of being parallel to SOML and that of being parallel to SOML (Bismuth shielding) respectively, so the doses to Lens reduced significantly. Next, in the scanning of being parallel to IOML (Bismuth shielding), the reduction of 37.12% was found. According to the results, reduction in the doses of radiation was found the most significantly both in the scanning of being parallel to SOML and that of being parallel to SOML (Bismuth shielding). With the limit of the equivalent dose to Lens as the reference, this researcher conducted comparison with the dose to occupational exposure and dose to Public exposure in the scanning of being parallel to IOML and found 39.47% and 394.73% respectively; however in the scanning of being parallel to SOML (Bismuth shielding), considerable reduction was found as 4.08% and 40.8% respectively. According to the results of evaluation on picture quality, every image was found to meet the evaluative standards of phantom scanning in terms of the measurement of CT numbers and noise. In conclusion, it would be the most useful way to reduce the dose of radiation to Lens to use shields in brain perfusion CT scanning and adjust patients' position so that their lens will not be in the field of radiation.