• Title/Summary/Keyword: 과학적 개념

Search Result 2,804, Processing Time 0.026 seconds

Elementary School Teachers' Concept of Combustion - Focus on Change of Gases - (연소에 대한 초등교사의 개념 - 기체변화를 중심으로 -)

  • Shin, Ae-Kyung;Moon, Hyun-Sook;Kang, Min-Seog
    • Journal of The Korean Association For Science Education
    • /
    • v.31 no.6
    • /
    • pp.942-957
    • /
    • 2011
  • The purpose of this research was to examine the concept of elementary school teachers of combustion. The participants were selected from the elementary school teachers who had various career experiences, 6th grade science teaching experiences, and academic backgrounds on science. For the purpose of this study, 12 elementary school teachers took the concept-test formed five questions on combustion and were interviewed. The concept-test was composed with 'The definition of combustion', 'The reason that the candle was blown out when glass was closed.', 'The existence of oxygen and carbon dioxide of before and after combustion in glass', 'Combustion of iron', 'Combustion products'. And the collected data by semi-structured interviews based on responses to the concept-test. During the analysis of the data, additional interviews by phone, e-mail and Internet messenger were conducted if necessary. The answers to each question were classified into three levels: (Scientific-concept(S), Partial-concept(P), Misconcept(M)). The research results showed that all teachers had misconceptions or partial-concept of more than 50 percent of each question. Teachers who had the 6th grade science teaching experience acquired scientific concepts of the combustion more than teachers who did not have the 6th grade science teaching experience. We should develop visualization materials about the change of gases during combustion and use these materials for implementation of the scientific concept.

The Effect of Student-led Assessment on Students' Achievement Emotions and Science Concept Understanding in Middle School Science Class (중학교 과학 수업에서 학생주도평가가 성취정서와 과학개념이해에 미치는 영향)

  • Dajeong Yun;Jihun Park;Jeonghee Nam
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.4
    • /
    • pp.253-270
    • /
    • 2023
  • The purpose of this study was to examine the effect of student-led assessment on achievement emotions and science concept understanding in middle school science classes. For this purpose, 4 of the 7 classes in the third grade of mid- dle school in small and medium-sized cities were selected as the experimental group and conducted student-led assessment, while the comparative group (3 classes) conducted teacher-led assessment. The student-led assessment consisted of 4 stages in which learners took initiative to set learning goals and develop assessment criteria, conduct self assessment and peer assess- ment, and carry out seven assessment activities. Student-led assessment was effective in improving positive achievement emotions and relieving negative achievement emotions and increasing students' science concept understanding in middle school students. Students perform student-led assessment, grasp their reach, and repeatedly go through reflective thinking to compensate for deficiencies in the learning process. Therefore, student-led assessment can be used as a tool to increase science concept understanding by continuously checking the level of science concept understanding.

Types of Middle School Students' Conceptual Change on the Concept of Electrolyte and Ion (전해질과 이온 개념에 대한 중학생들의 개념변화 유형)

  • Shin, Sung-Hee;Park, Hyun Ju;Yang, Kiyull
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.1
    • /
    • pp.48-58
    • /
    • 2016
  • This study was to investigate the types of middle school students’ conceptual change on electrolyte and ion. Data were collected by pre- and post- exams of 9th grade students’ conceptions of electrolyte and ion, and by semi-structured interviews with nine students served as case representatives who participated in the study. All interviews were transcribed, analyzed and classified by conceptual change according to the responses of the students. The results are as follows: First, students’ ion conceptual change was classified into four types; simple conception to sophisticated conception, incomplete conception to scientific conception, misconception to confused conception, and misconception to misconception. Most students had difficulty in understanding of the concepts of ion in pre- and post-class, and they failed to distinguish between atom and subatomic particles precisely. Second, students’ conceptual change of electrolyte was also classified into the following four types; partially scientific conception to sophisticated conception, misconception to partial misconception, incomplete conception to incomplete conception and misconception to misconception. The study found that students had difficulty distinguishing the difference between electrolytes and nonelectrolytes. Third, students also had difficulty understanding the concepts on particles because they learned the ‘electrolyte and ion’ unit so quickly in the second semester of 9th grade in order to fill in the academic reports for applying high schools. Furthermore, some suggestions were made based on the results for understanding scientific concepts on particles.

The Effect of the Use of Concept Mapping on Science Achievement and the Scientific Attitude in Ocean Units of Earth Science (해양단원 개념도 활용 수업이 과학성취도 및 태도에 미치는 효과)

  • Han, Jung-Hwa;Kim, Kwang-Hui;Park, Soo-Kyong
    • Journal of the Korean earth science society
    • /
    • v.23 no.6
    • /
    • pp.461-473
    • /
    • 2002
  • Concept mapping is a device for representing the conceptual structure of a subject discipline in a two dimensional form which is analogous to a road map. In the teaching and learning of earth science, each concept depends on its relationships to many others for meaning. Using concept mapping in teaching helps teachers and students to be more aware of the key concepts and relationships among them. The purpose of this study is to investigate the effect of the use of concept mapping on science achievement and the scientific attitude in ocean units of earth science. The results of this study are as follows; first, the science achievement of a group of concept mapping teaching is significantly higher than that of the group of traditional teaching. Also, when the achievement levels are compared among different cognitive ability groups, the effect is more significant in mid or lower level student groups than in high level groups. The use of concept mapping is more effective when the concepts have a distinct concept hierarchy. Second, the scores of the test of ‘attitude toward scientific inquiry’ and ‘application of scientific attitude’ of the group of concept mapping teaching are significantly higher than those of the group of traditional teaching, whereas the scores of the test of ‘interest in science learning’ of concept mapping teaching is not different from those of group of traditional teaching. Third, the survey on the use of concept mapping shows a positive response across the tested groups. The use of concept mapping is more beneficial in fostering the comprehension of the topic. A concept map of student's own construction facilitates the assessment of learning, thus promising the usefulness of concept mapping as a means of evaluation. In regard to retention aspect, concept mapping is considered to be more effective in confirming and remembering the topic, while less effective in the aspects of activity and interest. In conclusion, the use of concept maps makes learning an active meaningful process and improves student's academic achievement and scientific attitude. If the concept mapping is more effectively as an active teaching strategy, more meaningful learning will be attained.

Cyberhuman: The Interaction Autonomous Agents in Dynamic Environment (사이버인간: 동적 환경에서 능동 에이전트간 상호작용)

  • Bae, Kyung-Pyo;Park, Jung-Yong;Shin, Dong-Seung;Park, Jong-Hee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.96-98
    • /
    • 1998
  • 객체와 객체, 객체와 환경(공간 객체) 사이의 상호작용을 Field 라는 개념을 도입하여 개념적으로 장 이론이라는 방법론으로 객체들간의 상호작용을 해석하였다. 구체적으로 환경은 공간에 대한 수학적 개념으로 정의하고 객체와 환경사이의 상호작용은 해석하였다. 구체적으로 환경은 공간에 대한 수학적 개념으로 정의하고 객체와 환경사이의 상호작용은 일련의 상호 의존적 사실들로 표현하였다. 따라서 공간에 대한 수학적 개념과 힘의 역동 개념을 동원해서 객체와 환경이 주어진 상황에서 나타나는 구체적인 행동을 기술한다. Vector, Algebra, Topology 등과 같은 물리학적 및 수학적 개념을 도입하여 객체 상호작용을 해석하기 위한 과학적 이론 시스템 개발에 활용할 가능성을 제시하였다.

  • PDF

Earth Science Teachers' Conceptual Types about Image Formation through a Telescope (망원경의 상 형성에 대한 지구과학교사들의 개념 유형)

  • Lee, Seok-Woo;Yim, In-Sung;Choe, Sung-Urn
    • Journal of the Korean earth science society
    • /
    • v.30 no.7
    • /
    • pp.855-868
    • /
    • 2009
  • The purpose of this study was to investigate how teachers understand the principle of image formation of stars through a telescope. This study was conducted by using explanatory paper questionnaires given to 101 earth science teachers in the areas of Gyunggi province and Seoul. The questionnaires were cross-analyzed by three experts in earth science education. Result indicated that most of the participating teachers did not have systematic concepts about the process of making an image formed by a convex lens. Particulary, they did not sufficiently understand the concepts of an image and the functions of a screen. Furthermore, only 3% of the participants possessed the scientific concepts about the image formation principle of a star through the telescope. Most of the teachers seem to have non-scientific or alternative concepts about the image formation, which was only understanded with the fragmented characteristics about light and convex lens.

Characteristics of Teaching Orientation and PCK of Science Teachers in Online-offline Mixed Learning Environment (온-오프라인 혼합 학습환경에서 과학교사의 교수 지향과 PCK 특징)

  • Jisu Kim;Aeran Choi
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.6
    • /
    • pp.441-461
    • /
    • 2023
  • This study explore characteristics of teaching orientation and pck of science teachers in online-offline mixed learning environment. Data consisted of open-ended survey, semi-structured interview, class observation, field notes from 12 science teachers. We categorized teaching orientation considering both science education goals and science teaching·learning orientation. There were 8 different teaching orientations such as 'understanding science concepts-lecture centered' 'constructing science concepts-inquiry based' 'applying science concepts and inquiry-inquiry based' 'applying science concepts and inquiry-lectured centered' 'analyzing and judging science information-inquiry based' 'developing scientific attitude-inquiry based' 'developing scientific attitude-lecture centered' and 'developing perception of interrelationships among science, technology, and society-inquiry based'. Teachers with inquiry based teaching·learning orientation seemed to have knowledge of science curriculum specific to online learning environment for student inquiry. While teachers with 'understanding science concepts-lecture centered' teaching orientation appeared to have questioning strategy of checking student understanding and strategy of repeating a lecture, teachers with 'constructing science concepts-inquiry based' teaching orientation appeared to have knowledge of instructional strategies to perform online group activities targeting student construction of knowledge and to replace face-to-face group activities with virtual experiments and individual experiments. While teachers with 'understanding science concepts-lecture centered' teaching orientation did not show knowledge of student science learning, teachers with 'constructing science concepts-inquiry based' teaching orientation appeared to have knowledge of student difficulties in inquiry based learning.

An Investigation on High School Students' Chemistry-Related Environmental Conceptions and Environmental Attitudes (고등학생들의 화학 관련 환경 개념 및 환경에 대한 태도 조사)

  • Han, Jae-Young;Kang, Suk-Jin;Noh, Tae-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.20 no.2
    • /
    • pp.344-352
    • /
    • 2000
  • In this study, high school students' environmental conceptions and attitudes, and their relationships with affective variables (self-esteem, enjoyment of science lesson, and leisure interest in science) were investigated. Students' environmental conceptions were found to be low, and male students' environmental conceptions were higher than female students. However, the environmental attitudes of female students were more positive than those of male students. There were no differences between male and female students in the ecocentric attitudes, but male students had more egocentric attitudes than female students. Students of higher prior science achievement level possessed higher level of environmental conceptions than their counterparts. Among the affective variables studied, leisure interest in science was significantly correlated with environmental attitudes.

  • PDF

Integrated Approach to Early Childhood Curriculum for Science (통합적 유아 과학 교육과정의 접근 방식)

  • 전명남;정정희
    • The Journal of the Korea Contents Association
    • /
    • v.2 no.2
    • /
    • pp.10-16
    • /
    • 2002
  • This paper discussed the integrated approach to early childhood curriculum for science with reference to linking activities like as math activities, music art activities, fay, lied rips, creative thinking, food experiences, literature links, creative movement, science activities and promoting concept connections by Halan et al(2000). The integrated approach to early childhood science education is based on whole mind of children and science literacy, science concept, science teaming through multiple pathways.

  • PDF

The Problems of Science Textbook Contents Related to Element and Atom in the Viewpoint of Science History (원소와 원자 개념에 대한 과학 교과서 진술의 문제점 분석. 과학 개념의 역사적 변천을 중심으로)

  • Paik, Seoung Hey;Ryu, Oh Hyeon;Kim, Dong Uk;Park, Kuk Tae
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.4
    • /
    • pp.357-369
    • /
    • 2001
  • This study aimed to analyze the evolution of general ideas concerning the element and the atom. In the scientific viewpoint, the modern idea of the element has been variously revised by the ancient Greeks, Boyle-Lavoisier, and Dalton. The definition of the atom was confused with that of the element from the ancient Greecian era to Lavoisier's era. The definition was also changed by Dalton and Rutherford. An analysis of the definitions of element and atom as presented in science textbooks for secondary school students and in general chemistry textbooks revealed that these definitions from diverse eras are confusing and inadequately explicated. The definition presented in one textbook was contradictory to the definitions in other textbooks. This tendency has been sustained in the textbooks from the 4th to 6th science curriculum. Therefore, we need to clarify the definitions of element and atom in order to help the students gain a better understanding of these scientific concepts.

  • PDF