• Title/Summary/Keyword: 과학적 가설 생성

Search Result 55, Processing Time 0.022 seconds

Analysis of Students' Processes of Generating Scientific Explanatory Hypothesis - Focused on the Definition and the Characteristics of Scientific Hypothesis - (학생의 과학적 설명가설의 생성과정 분석 - 과학적 가설의 정의와 특성을 중심으로 -)

  • Park, Jong-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.20 no.4
    • /
    • pp.667-679
    • /
    • 2000
  • One of the major activities in scientific inquiry, as well as in the process of conceptual change, is the generation of scientific hypothesis. In this study, the definition and the characteristics of scientific hypothesis are analyzed. Especially, differences between explanatory hypothesis and scientific explanation, predictive hypothesis and scientific prediction, and scientific hypothesis and the inductive generalization are analyzed. And the process of making scientific hypothesis is suggested as 4 stages, and the role and the characteristic of the abductive thinking, which can be viewed as one of the scientific inferences needed to generate hypothesis, are discussed. In analysis, concrete examples from integrated science textbook of high school are used for application to the classroom teaching.

  • PDF

Application of the Triple Abduction Model for Improving the Skills of Scientific Hypothesis Generation (과학적 가설의 생성력 향상을 위한 삼원귀추모형의 적용)

  • Jeong, Jin-Su;Won, Hee-Jung;Kwon, Yong-Ju
    • Journal of The Korean Association For Science Education
    • /
    • v.25 no.5
    • /
    • pp.595-602
    • /
    • 2005
  • The purpose of this study was to test effects of the Triple Abduction Model (TAM) for improving the skills of scientific hypothesis generation in science learning. Twenty-six students were selected for the TAM group and 27 others were selected for a traditional group from one high school. Researchers developed and administered 10 TAM and traditional-style activities. The degree of hypothesis explanation was evaluated during the experimental treatment. Each Subjects' ability in scientific hypothesis generation was assessed by the Science Knowledge Generation Test A and B. Test A was used as a protest and B for a posttest. The results of this study revealed that the degree of hypothesis explanation of TAM was significantly higher than the degree of the traditional group, and the mean of the TAM group was equal to the mean of traditional group on the pretest. Additionally, the mean of the TAM group was significantly higher than the mean of the control group on the posttest. Therefore, instruction with TAM was more effective than the instruction using traditionals method for increasing students' hypothesis generation skills.

Analysis of Variation in Pupil Size of Elementary Students on the Types of Generating Scientific Hypothesis (과학적 가설 생성 유형에 따른 초등학생의 동공크기 변화 분석)

  • Choi, Sungkyun;Shin, Donghoon
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.3
    • /
    • pp.483-492
    • /
    • 2017
  • The purpose of this study is to analyze the variation in pupil size as shown in the scientific hypothesis generation process of students in Elementary School. The subjects for research consisted of 20 fifth-year students at Seoul B elementary school who agreed to participate in the research. The task consisted of four scientific hypothesis-generating tasks. SMI's Eye Tracker(iView $X^{TM}$ RED) was used to collect eye movement data. Experiment 3.6 and BeGaze 3.6 softwares were used to plan experiment and analyzed the task performance process and eye movement data. The findings of this study are twofold. First, there were four types that generate hypothesis about the tasks. Second, in the moment of generating hypothesis, participants' pupils have grown bigger. And while thinking of generating hypothesis or elaborating hypothesis, there were no big changes. These results show the moment of generating hypothesis is affected by emotional factors besides cognitive factors.

Brain Activation in Generating Hypothesis about Biological Phenomena and the Processing of Mental Arithmetic: An fMRI Study (생명 현상에 대한 과학적 가설 생성과 수리 연산에서 나타나는 두뇌 활성: fMRI 연구)

  • Kwon, Yong-Ju;Shin, Dong-Hoon;Lee, Jun-Ki;Yang, Il-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.1
    • /
    • pp.93-104
    • /
    • 2007
  • The purpose of this study is to investigate brain activity both during the processing of a scientific hypothesis about biological phenomena and mental arithmetic using 3.0T fMRI at the KAIST. For this study, 16 healthy male subjects participated voluntarily. Each subject's functional brain images by performing a scientific hypothesis task and a mental arithmetic task for 684 seconds were measured. After the fMRI measuring, verbal reports were collected to ensure the reliability of brain image data. This data, which were found to be adequate based on the results of analyzing verbal reports, were all included in the statistical analysis. When the data were statistically analyzed using SPM2 software, the scientific hypothesis generating process was found to have independent brain network different from the mental arithmetic process. In the scientific hypothesis process, we can infer that there is the process of encoding semantic derived from the fusiform gyrus through question-situation analysis in the pre-frontal lobe. In the mental arithmetic process, the area combining pre-frontal and parietal lobes plays an important role, and the parietal lobe is considered to be involved in skillfulness. In addition, the scientific hypothesis process was found to be accompanied by scientific emotion. These results enabled the examination of the scientific hypothesis process from the cognitive neuroscience perspective, and may be used as basic materials for developing a learning program for scientific hypothesis generation. In addition, this program can be proposed as a model of scientific brain-based learning.

A Grounded Theory on the Process of Generating Hypothesis-Knowledge about Scientific Episodes (과학적 가설 지식의 생성 과정에 대한 바탕이론)

  • Kwon, Yong-Ju;Jeong, Jin-Su;Kang, Min-Jeong;Kim, Young-Shin
    • Journal of The Korean Association For Science Education
    • /
    • v.23 no.5
    • /
    • pp.458-469
    • /
    • 2003
  • Hypothesis is defined as a proposition intended as a possible explanation for an observed phenomenon. The purpose of this study was to generate a grounded theory on the process of undergraduate students' generating hypothesis-knowledge about scientific episodes. Three hypothesis-generating tasks were administered to four college students majored in science education. The present study showed that college students represented five types of intermediate knowledge in the process of hypothesis generation, such as question situation, hypothetical explicans, experienced situation, causal explicans, and final hypothetical knowledge. Furthermore, students used six types of thinking methods, such as searching knowledges, comparing a question situation and an experienced situation, borrowing explicans, combining explicans, selecting an explican, and confirming explicans. In addition, hypothesis-generating process involves inductive and deductive reasoning as well as abductive reasoning. This study also discusses the implications of these findings for teaching and evaluating in science education.

Children's Generating Hypotheses on the Pendulum Motion: Roles of Abductive Reasoning and Prior Knowledge (진자운동에서 아동의 가설 생성: 귀추와 선지식의 역할)

  • Joeng, Jin-Su;Park, Yun-Bok;Yang, Il-Ho;Kwon, Yong-Ju
    • Journal of the Korean earth science society
    • /
    • v.24 no.6
    • /
    • pp.524-532
    • /
    • 2003
  • The purpose of the present study was to test the hypothesis that student's abductive reasoning skills play an important role in the generation of hypotheses on pendulum motion tasks. To test the hypothesis, a hypothesis-generating test on the pendulum motion and a prior knowledge test about the length of the pendulum motion were developed and administered to a sample of 5th grade children. A significant number of subjects who have the prior knowledge about the length of the pendulum motion failed to apply that prior knowledge to generate a hypothesis on a swing task. These results showed that students' failure in hypothesis-generating was related to their deficiency in abductive reasoning ability, rather than the simple lack of prior knowledge. Furthermore, children's successful generating hypothesis should be required their abductive reasoning skills as well as prior knowledge. Therefore, this study supports the notion that abductive reasoning ability beyond prior knowledge plays an important role in the process of hypothesis-generation. This study suggests that science education should provide teaching about abdctive reasoning as well as scientific declarative knowledge for developing children's hypothesis-generating skills.

A Philosophical Study on the Generating Process of Declarative Scientific Knowledge - Focused on Inductive, Abductive, and Deductive process (선언적 과학 지식의 생성 과정에 대한 과학철학적 연구 - 귀납적, 귀추적, 연역적 과정을 중심으로 -)

  • Kwon, Yong-Ju;Jeong, Jin-Su;Park, Yun-Bok;Kang, Min-Jeong
    • Journal of The Korean Association For Science Education
    • /
    • v.23 no.3
    • /
    • pp.215-228
    • /
    • 2003
  • The present study is to analyze the arguments about the generation of declarative scientific-knowledge in the philosophy of science and invent a structured model of the process of scientific-knowledge generation with the types of the generated scientific-knowledge. The invented model shows that scientific-knowledge generation is a distinctive process with the processes of inductive, abductive, and deductive thinking. Furthermore, inductive process is included with observation, which is consisted of simple observation and operative observation, and rule-discovery which is involved with the processes of commonness discovery, classification, pattern discovery, and hierarchical relationship. Also, abductive process has two components. One component generates question and second component generates hypothesis in which the process consists of representing question situation, identifying experienced situation, identifying causal explicans, and generating hypothetical explicans. Finally, deductive process is involved with logical inventing test method and evaluation criteria, concrete inventing test method and evaluation criteria, evaluating hypothesis, and making conclusion.

An Intensive Interview Study on the Process of Scientists' Science Knowledge Generation (과학자의 과학지식 생성 과정에 대한 심층 면담 요구)

  • Yang, Il-Ho;Jeong, Jin-Su;Kwon, Yong-Ju;Jeong, Jin-Woo;Hur, Myoung;Oh, Chang-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.1
    • /
    • pp.88-98
    • /
    • 2006
  • The purpose of this study was to analyze the process of scientists' science knowledge generation by employing four creative scientists as participants. Raw protocols were collected by an intensive interview method and then analyzed by a psychological modelling procedure. The present study showed that the process of knowledge generation divided into the processes of inductive, abductive, and deductive thinking. Furthermore, the inductive process in simple and operative observation was involved in the processes of generating a question, conjecture/prediction, designing an operational method, operation, and simple observation. Also, the abductive process had two components; question generation, and hypothesis generation which consisted of analyzing questions, searching explicans, and constructing hypothesis. Finally, the deductive process involved inventing abstract test methods, inventing abstract criteria, inventing concrete test methods, inventing concrete criteria, collecting results, and evaluating hypotheses and stating conclusions.

The Features of the Hypotheses Generated by Pre-service Elementary Teachers Using the Form of Peirce's Abduction (Peirce의 귀추법 양식을 이용한 교육 대학생들이 생성한 가설의 특징 분석)

  • Joung Yong-Jae;Song Jin-Woong
    • Journal of Korean Elementary Science Education
    • /
    • v.25 no.2
    • /
    • pp.126-140
    • /
    • 2006
  • The purpose of this study was to design a 'Form of Abduction' which is the 'guide form used in generating hypothesis through abduction', and to analyze the features of the hypotheses generated with the 'Form of Abduction' compared with those generated without any special guide form. Through a review of Peirce's literature regarding the meaning and frame of abduction, a 'Form of Abduction' was designed as a three step format as follows: (i) writing down what is doubted, (ii) wiling tentative explanations which replace what is doubted with what is believed, (iii) writing the tentative explanations as hypotheses. The thirty four pre-service elementary teachers were asked to generate hypotheses without a 'Form of Abduction' at first, and then were asked to do so again using the form. The results of analysing the features of the hypotheses were as follows: in the case of using a 'Form of Abduction', firstly, the types of misunderstanding or mis-adapting the meaning of hypothesis were found to be rare, and secondly, the types of 'giving explanation about the cause of problematic situations through analogical inferencing from the existing knowledge' were found to be double the rate of when no special guide form was used. In conclusion, the hypotheses generated with the 'Form of Abduction' had the features of satisfying the original meaning of hypothesis, i.e. 'explaining the cause of phenomenon and leading to knowledge expansion'. These results also showed that using a 'Form of Abduction', although its form was simple, could be a way of helping students generate hypothesis properly in science classes.

  • PDF

The Effect of Incidental Semantic Activation on Hypothesis Generation: Exclusive vs Compatible Hypotheses (우연적 의미 활성화가 가설 생성에 미치는 영향: 가설 유형에 따른 차이)

  • Lee, Younha;Park, Jooyong
    • Korean Journal of Cognitive Science
    • /
    • v.26 no.2
    • /
    • pp.209-239
    • /
    • 2015
  • Previous studies on the effect of incidental semantic priming on judgment, have focused mainly on mutually exclusive hypotheses. However, the present study explored whether incidental semantic activation affects diagnostic inference depending on the type of the hypothesis: mutually exclusive hypotheses vs compatible hypotheses. In Experiment 1, in case of mutually exclusive hypotheses, the final hypothesis was selected according to the incidental semantic priming, but there was no difference in the number of generated hypothesis in comparison with the control. However, for compatible hypotheses (i.e., both hypotheses can be true), the semantic priming affected the number of generated hypotheses, but not the selection of the final hypothesis. The same pattern of results was observed even when the cognitive load was increased. In Experiment 2, we found a boundary condition of incidental semantic activation on diagnostic inference. When cues related to each of the hypotheses were presented simultaneously, the incidental semantic effect disappeared. These results suggest that people consider all possible cues when making diagnostic inference in daily life. In light of these findings, further research on hypothesis generation/evaluation should take the type of hypothesis into account.