• 제목/요약/키워드: 공통격벽 추진제 탱크

Search Result 3, Processing Time 0.009 seconds

Transient Heat Transfer Analysis of Small Launch Vehicle Common Bulkhead Propellant Tank with Different Insulation Thickness (소형발사체 공통격벽 추진제 탱크의 단열재 두께 변화에 따른 과도 열전달 해석)

  • Ji-Yoon Yang;Gyeong-Han Lee;Sang-Woo Kim;Soo-Yong Lee
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.3
    • /
    • pp.70-75
    • /
    • 2024
  • The insulation performance of a common bulkhead propellant tank for small launch vehicles with variations in insulation thickness was analyzed. The common bulkhead propellant tank composed of a single part allows for lightweight design, as it eliminates the need for tank connections. However, problems such as propellant loss and ignition delay due to heat transfer caused by temperature differences between oxidizer and fuel may arise. Therefore, it is essential to verify the insulation performance of the common bulkhead structure that separates the oxidizer tank and fuel tank. In this study, transient heat transfer analysis was conducted for propellant tanks with insulation thicknesses of (50, 55, 60, 65, and 70) mm to analyze the insulation performance using boil-off mass. Subsequently, the boil-off mass of the oxidizer generated during the first-stage flight time of the propellant tank was determined. The results confirmed that increasing the insulation thickness reduces the boil-off mass, thereby improving the insulation performance.

Study on Deriving the Buckling Knockdown Factor of a Common Bulkhead Propellant Tank (공통격벽 추진제 탱크 구조의 좌굴 Knockdown Factor 도출 연구)

  • Lee, Sook;Son, Taek-joon;Choi, Sang-Min;Bae, Jin-Hyo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.3
    • /
    • pp.10-21
    • /
    • 2022
  • The propellant tank, which is a space launch vehicle structure, must have structural integrity as various static and dynamic loads are applied during ground transportation, launch standby, take-off and flight processes. Because of these characteristics, the propellant tank cylinder, the structural object of this study, has a thin thickness, so buckling due to compressive load is considered important in the cylinder design. However, the existing buckling design standards such as NASA and Europe are fairly conservative and do not reflect the latest design and manufacturing technologies. In this study, nonlinear buckling analysis is performed using various analysis models that reflect initial defects, and a method for establishing new buckling design standards for cylinder structures is presented. In conclusion, it was confirmed that an effective lightweight design of the cylinder structure for common bulkhead propulsion tank could be realized.

Conceptual Design of a LOX/Methane Rocket Engine for a Small Launcher Upper Stage (소형발사체 상단용 액체메탄 로켓엔진의 개념설계)

  • Kim, Cheulwoong;Lim, Byoungjik;Lee, Junseong;Seo, Daeban;Lim, Seokhee;Lee, Keum-Oh;Lee, Keejoo;Park, Jaesung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.4
    • /
    • pp.54-63
    • /
    • 2022
  • A 3-tonf class liquid rocket engine that powers the upper stage of a small launcher and lifts 500 kg payload to 500 km SSO is designed. The small launcher is to utilize the flight-proven technology of the 75-tonf class engine for the first stage. A combination of liquid oxygen and liquid methane has been selected as their cryogenic states can provide an extra boost in specific impulse as well as enable a weight saving via the common dome arrangement. An expander cycle is chosen among others as the low-pressure operation makes it robust and reliable while a specific impulse of over 360 seconds is achievable with the nozzle extension ratio of 120. Key components such as combustion chamber and turbopump are designed for additive manufacturing to a target cost. The engine system provides an evaporated methane for the autogenous pressurization system and the reaction control of the stage. This upper stage propulsion system can be extended to various missions including deep space exploration.